• Title/Summary/Keyword: Stiffness curve

Search Result 379, Processing Time 0.023 seconds

A displacement-based seismic design method with damage control for RC buildings

  • Ayala, A. Gustavo;Castellanos, Hugo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.413-434
    • /
    • 2012
  • This paper presents a displacement-based seismic design method with damage control, in which the targets for the considered performance level are set as displacements and a damage distribution is proposed by the designer. The method is based on concepts of basic structural dynamics and of a reference single degree of freedom system associated to the fundamental mode with a bilinear behaviour. Based on the characteristics of this behaviour curve and on the requirements of modal spectral analysis, the stiffness and strength of the structural elements of the structure satisfying the target design displacement are calculated. The formulation of this method is presented together with the formulations of two other existing methods currently considered of practical interest. To illustrate the application of the proposed method, 5 reinforced concrete plane frames: 8, 17 and 25 storey regular, and 8 and 12 storey irregular in elevation. All frames are designed for a seismic demand defined by single earthquake record in order to compare the performances and damage distributions used as design targets with the corresponding results of the nonlinear step by step analyses of the designed structures subjected to the same seismic demand. The performances and damage distributions calculated with these analyses show a good agreement with those postulated as targets.

THE TEMPERATURE DEPENDENCE OF THE MAGNETIZATION OF THE AMORPHOUS $Co_{80+x}TM_{12}B_{8-x}$ (TM = Ti, Zr, Hf, Nb) ALLOYS

  • Han, Seung-Man;Yu, Seong-Cho;Kim, Kwang-Youn;Noh, Tae-Hwan;Kim, Hi-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.496-499
    • /
    • 1995
  • Amorphous $Co_{80+x}TM_{12}B_{8-x}$ (TM = Ti, Zr, Hf, Nb and x = 0, 2, 4 at%) alloys were prepared by single roll melt spinning technique. Saturation magnetization of the amorphous ribbons was measured by SQUID and vibrating sample magnetometer from 5 to 800 K under applied fields up to 10 kOe. Typical thermo-magnetization curves were observed and the average values of the spectroscopic splitting g factor were estimated from the ferromagnetic resonance curve. For all the amorphous alloys studied here the saturation magnetization in the temperature range 5 K up to about $0.3T_{c}$ can be described by the Bloch relation: $M_{s}(T)\;=\;M_{s}(0)(1-BT^{3/2}-CT^{5/2})$. From the values of $M_{s}(0)$, B and spectroscopic splitting g factor the spin wave stiffness constants were calculated.

  • PDF

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

A Numerical Study on the Thermo-mechanical Response of a Composite Beam Exposed to Fire

  • Pak, Hongrak;Kang, Moon Soo;Kang, Jun Won;Kee, Seong-Hoon;Choi, Byong-Jeong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1177-1190
    • /
    • 2018
  • This study presents an analytical framework for estimating the thermo-mechanical behavior of a composite beam exposed to fire. The framework involves: a fire simulation from which the evolution of temperature on the structure surface is obtained; data transfer by an interface model, whereby the surface temperature is assigned to the finite element model of the structure for thermo-mechanical analysis; and nonlinear thermo-mechanical analysis for predicting the structural response under high temperatures. We use a plastic-damage model for calculating the response of concrete slabs, and propose a method to determine the stiffness degradation parameter of the plastic-damage model by a nonlinear regression of concrete cylinder test data. To validate simulation results, structural fire experiments have been performed on a real-scale steel-concrete composite beam using the fire load prescribed by ASTM E119 standard fire curve. The calculated evolution of deflection at the center of the beam shows good agreement with experimental results. The local test results as well as the effective plastic strain distribution and section rotation of the composite beam at elevated temperatures are also investigated.

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.

Structural Design of High-Rise Building in Toranomon-Azabudai Project (A Block)

  • Kazumasa, Okabe;Kai, Toyama;Takuya, Furuta;Jyunichi, Yamashita;Hiroki, Mukai;Takahiro, Goseki;Shingo, Masuda;Dai, Shimazaki;Yusuke, Miyagi;Yuji, Ozawa
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.157-170
    • /
    • 2022
  • This paper explains about structural planning and structural design of the high-rise building in Toranomon-Azabudai Project (A Block) which is now under construction. The building is about 330 meters high, has 4.2 aspect ratio, and the outline of the building has shallow curve. We adopted seismic response control structure. The building is a steel rigid frame structure with braces, and it has enough stiffness to obtain its primary natural period to be less than about seven seconds, in consideration of wind response, seismic response and inhabitability for the wind shaking. In terms of business continuity plan, the building has a high seismic performance; value of story drift angle shall be 1/150 or less and members of the building remain almost undamaged while or after a large earthquake. Active mass dumper shall be installed at the top of the building to improve inhabitability while strong wind is blowing.

Analysis of Gear Noise and Design for Gear Noise Reduction (저소음 치차설계를 위한 치형수정에 관한 연구)

  • Yoon, Koo-Young;Park, Wang-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.129-135
    • /
    • 1996
  • The area of gear vibration and noise, has recently been the focus of many studies. The proper kinematic and geometric design of gears, the mathematical modeling of gear system are essential for a good design. This work present a gear disign for reducing noise, and practical approaches used for machinery noise reduction slong with the summary of methods available for predicting gear noise in terms of the transmis- sion error, and show a comparative study with other methods. A new tooth profile modification is proposed for reducing vibration and noise of involute gears. The method is based on the use of cubic spline curves. The tooth profile is constrained to assume an involute shape during the loaded operation. Thus the new gear profile assures conjugate motion at all points along the line of action. The new profile is found to result in a more uniform static transmission error compared to not only standard involute profile but also modificated profile therby contributing to the improvement of vibration and noise characteristics of the gear.

  • PDF