• Title/Summary/Keyword: Stiffness Parameter

Search Result 633, Processing Time 0.039 seconds

Longitudinal vibration of a nanorod embedded in viscoelastic medium considering nonlocal strain gradient theory

  • Balci, Mehmet N.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This article investigates the longitudinal vibration of a nanorod embedded in viscoelastic medium according to the nonlocal strain gradient theory. Viscoelastic medium is considered based on Kelvin-Voigt model. Governing partial differential equation is derived based on longitudinal equilibrium and analytical solution is obtained by adopting harmonic motion solution for the nanorod. Modal frequencies and corresponding damping ratios are presented to demonstrate the influences of nonlocal parameter, material length scale, elastic and damping parameters of the viscoelastic medium. It is observed that material length scale parameter is very influential on modal frequencies especially at lower values of nonlocal parameter whereas increase in length scale parameter has less effect at higher values of nonlocal parameter when the medium is purely elastic. Elastic stiffness and damping coefficient of the medium have considerable impacts on modal frequencies and damping ratios, and the highest impact of these parameters on frequency and damping ratio is seen in the first mode. Results calculated based on strain gradient theory are quite different from those calculated based on classical elasticity theory. Hence, nonlocal strain gradient theory including length scale parameter can be used to get more accurate estimations of frequency response of nanorods embedded in viscoelastic medium.

Robot Calibration with Joint Stiffness Parameters for the Enhanced Positioning Accuracy (위치 정밀도 향상을 위한 관절강성 파라미터 포함 로봇 캘리브레이션)

  • Kang, Hee-Jun;Shin, Sung-Won;Ro, Young-Shick;Suh, Young-Soo;Lim, Hyun-Kyu;Kim, Dong-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.406-410
    • /
    • 2008
  • This paper presents a new robot calibration algorithm with joint stiffness parameters for the enhanced positioning accuracy of industrial robot manipulators. This work is towards on-going development of an industrial robot calibration software which is able to identify both the kinematic and non-kinematic robot parameters. In this paper, the conventional kinematic calibration and its important considerations are briefly described first. Then, a new robot calibration algorithm which simultaneously identifies both the kinematic and joint stiffness parameters is presented and explained through a computer simulation with a 2 DOF manipulator. Finally, the developed algorithm is implemented to Hyundai HX165 robot and its resulting improvement of the positioning accuracy is addressed.

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution According to Shape Parameter (강성분포가 주기성을 갖는 구형쉘의 형상계수에 따른 좌굴해석)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.169-175
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, this paper is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Dynamic Analysis of Rotating Turbine Blades by Improved Stiffness Matrix Method and Finite Element Method (개선된 STIFFNESS MATRIX 법, FEM에 의한 회전하는 터빈 BLADE의 DYNAMIC해석)

  • 이진갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.367-373
    • /
    • 1995
  • 터빈 blade에 대해 기존의 stiffness matrix법과 finite element법에 의한 방식을 개선하여 수치계산을 행한 결과 다음의 결론을 얻었다. 1)stiffness matrix법을 적용하기 위해 th.2 order로 방정식을 유도하였으며, 회전시의 원심력의 영향 및 blade의 기하학적 형상이 수식에 고려되었다. 이 방법으로 blade의 여러 parameter의 영향을 간단히 계산할 수 있다. 계산결과는 다른 논문의 결과와 잘 일치함을 보였다. 또한, 원심력의 영향에 있어서는 th.2 order의 계산결과가 기존의 변형된 th.1 order의 결과보다 더 정확한 결과를 얻을 수 있다. 2) FEM 이용시 계산시간을 단축하면서 정확한 결과를 얻기 위해 blade를 간단히 modeling하여, 기하학적인 형상과 회전시의 영향을 고려한 식을 유도하였다. 본 방법의 결과는 타 문헌과 일치하였다.

  • PDF

Eigenderivative Analysis by Modification of Design Parameter in the Proportional Damping System (설계파라미터 변경에 의한 비례 감쇠 구조물의 동특성 변화 해석)

  • Lee, J.Y.;Lee, J.W.;Lee, J.H.;Oh, J.O.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1648-1653
    • /
    • 2003
  • This paper predicts the modified proportional damping structural eigenvectors and eigenvalues due to the change in the mass and stiffness of a proportional damping structure by iterative calculation of the sensitivity coefficient using the original dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifing the mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

Behaviour of Tube Structures in terms of Structural Parameters (구조변수에 의한 튜브 구조의 거동)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.327-334
    • /
    • 2002
  • The global behavior of tube structures (including tube and tube(s)-in-tube constructions) is investigated for the behavioral characteristics of the structures and their performance in relation to the various structural parameters. The stiffness factor in terms of the axial stiffness of the columns and the bending stiffness of both columns and beams is chosen as a parameter to explain the global behavior of the structures. The shear-lag phenomenon is also discussed to explain the general behavior of the structures. Three types of tube structures, with various structural parameters, are analysed for the comparative study, and the results are compared to investigate the structural response and performance of such structures. As a result of the comparison it is obtained that the axial stiffness of the columns is the most important factor governing the response of the tube structures under lateral loading

  • PDF

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

Chaotic Behavior of 2-Dimensional Airfoil in Incompressible Flow (비압축성 유동장내 2차원 익형의 혼돈거동)

  • 정성원;이동기;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.495-508
    • /
    • 1995
  • The self-excited vibrations of airfoil is related to the classical flutter problems, and it has been studied as a system with linear stiffness and small damping. However, since the actual aircraft wing and the many mechanical elements of airfoil type have various design variables and parameters, some of these could have strong nonlinearities, and the nonlinearities could be unexpectedly strong as the parameters vary. This abrupt chaotic behavior undergoes ordered routes, and the behaviors after these routes are uncontrollable and unexpectable since it is extremely sensitive to initial conditions. In order to study the chaotic behavior of the system, three parameters are considered, i.e., free-stream velocity, elastic distance and zero-lift angle. If the chaotic parameter region can be identified from the mathematically modeled nonlinear differential equation system, the designs which avoid chaotic regions could be suggested. In this study, by using recently developed dynamically system methods, and chaotic regions on the parameter plane will be found and the safe design variables will be suggested.