• Title/Summary/Keyword: Stiffness Estimation

Search Result 345, Processing Time 0.027 seconds

The Ultimate Bearing Capacity and Estimation Method of Rigid Pile for Port Structures under Lateral Load (횡하중이 작용하는 항만구조물에서 짧은말뚝의 극한지지력 및 평가방법)

  • Kim, Byung-Il;Han, Sang-Jae;Kim, Jong-Seok;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2014
  • In this study the analysis is performed for influencing factors on the behavior of rigid piles (short pile) by research papers and case study. The results indicated that the point of virtual fixity should be calculated considering the relative stiffness of soil and pile, and Chang (1937) and P-Y method estimated the similar fixity. The values of ultimate resistances of a vertical pile to a lateral load are different for laboratory and field tests in cohesive soils and its ultimate values in laboratory tests are underestimated and in field tests are under or overestimated. The estimated resistance by Hansen (1961)'s method is similar to the value of field tests. The horizontal resistances to laterally loaded pile in cohesionless soils are overestimated in laboratory tests and generally overestimated in field tests. The ultimate resistances by Zhang (2005)'s method, used to the empirical distribution of the resistance, are similar to the test results. In the paper the calculating method and distribution of the ultimate resistance in cohesive soils are proposed. The estimated value by the proposed method is closer to the test results than any other method of calculating ultimate resistance of the piles embedded into cohesive soils.

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

The Development on the Buckling Strength Estimation Formula of Plate Members in Consideration of Inplane Tension(I) (면내인장력을 고려한 판부재의 좌굴강도 평가식 개발 (I))

  • Ham, Juh H.;Kim, Ul N.;Chung, Yun S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 1996
  • Ship structure basically consists of plate members and it's overall strength depends an the stiffness and strength of each plate member. The buckling strength of plate is one of the most important design criteria when we investigate the structural intergraty. Therefore, it is necessary to surly reasonable buckling formula in order to carry out a more efficient and reliable design. In the present study, the buckling design formula of plate panels under combined loads(inplane compression, tension and shear) is obtained on the theoretical solution or reference paper. This formula is compared with the existing theoretical solution, other author's formula[1], design codes of LR and results which are obtained by numerical analysis. It has a good correlation with numerical analysis results or theoretical ones. When we evaluate buckling strength of plate panels, this formula can be presented with reasonable accuracy.

  • PDF

Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness (지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석)

  • Jang, Youngeun;Cho, Samdeok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.47-58
    • /
    • 2014
  • This study explores methods for modeling the foundation-seabed interaction needed for the load analysis of an offshore wind energy system. It comprises the comparison study of foundation design load analyses for NREL 5 MW turbine according to various soil-foundation interaction models by conducting the load analysis with GH-Bladed, analysis software for offshore wind energy systems. Furthermore, the results of the aforementioned load analysis were applied to foundation analysis software called L-Pile to conduct a safety review of the foundation cross-section design. Differences in the cross-section of a monopile foundation were observed based on the results of the fixed model, winkler spring and coupled spring models, and the analysis of design load cases, including DLC 1.3, DLC 6.1a, and DLC 6.2a. Consequently, under all design load conditions, the diameter and thickness of the monopile foundation cross-section were found to be 7 m and 80 mm, respectively, using the fixed and coupled spring models; the results of the analysis conducted using the winkler spring model showed that the diameter and thickness of the monopile foundation cross-section were 5 m and 60 mm, respectively. The study found that the soil-foundation interaction modeling method had a significant impact on the load analysis results, which determined the cross-section of a foundation. Based on this study, it is anticipated that designing an offshore wind energy system foundation taking the above impact into account would reduce the possibility of a conservative or unconservative design of the foundation.

Analysis of Allowable Stresses of Machine Graded Lumber in Korea (국내 기계등급구조재의 허용응력 분석)

  • Hong, Jung-Pyo;Oh, Jung-Kwon;Park, Joo-Saeng;Han, Yeon Jung;Pang, Sung-Jun;Kim, Chul-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • 365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

A Strain based Load Identification for the Safety Monitoring of the Steel Structure (철골 구조물의 안전성 모니터링을 위한 변형률 기반 하중 식별)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Kim, You-Sok;Park, Hyo-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2014
  • This study proposes a load identification for the safety monitoring of the steel structure based on measured strain data. Instead of parameterizing the stiffness of structure in the existing system identification researches, the loads on a structure and a matrix (the unit strain matrix) defined by the relationship between strain and load on structure are parameterized in this study. The error function is defined by the difference between measured strain and strain estimated by parameters. In order to minimize this error function, the genetic algorithm which is one of the optimization algorithm is applied and the parameters are found. The loads on the structure can be identified through the founded parameters and measured strain data. When the loads are changed, the unmeasured strains are estimated based on founded parameters and measured strains on changed state of structure. To verify the load identification algorithm in this paper, the static experimental test for 3 dimensional steel frame structure was implemented and the loads were exactly identified through the measured strain data. In case of loading changes, the unmeasured strains which are monitoring targets on the structure were estimated in acceptable error range (0.17~3.13%). It is expected that the identification method in this study is applied to the safety monitoring of steel structures more practically.

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.