• Title/Summary/Keyword: Stiffness Control

Search Result 1,109, Processing Time 0.025 seconds

Modeling of the Mechanical Drivetrain of an Electric Vehicle for Investigation of Torsional Oscillation Characteristics (전기자동차 기계적 구동계의 모델링 및 비틀림 진동특성 분석)

  • Kim, Ho-Gi;Oh, Joong-Seok;Kim, Sam-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.866-872
    • /
    • 2008
  • Torsional oscillations of the mechanical drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and to an increased stress of the mechanical components. To analyze this phenomenon, a drivetrain model is constructed with lumped parameters. The model parameters are identified by geometrical design data and experimental tests. The proposed model is validated by simulation and experimental tests in the time and the frequency domains. As a result, the torsional oscillations are observed at 7Hz of a low damped natural frequency. Also, the analysis of the effect of the parameter variations on the oscillations shows that the oscillation characteristic is mainly dependent on the rotor inertia, and the stiffness of the mounting of the drive aggregate and the driveshaft. The results will be utilized on the basis of the design of an electric drivetrain and an active control of drivetrain oscillations.

Contact Stress Analysis of Stick Type Ignition Coil Jacket PET (Stick Type Ignition Coil Jacket PET의 접촉응력 해석)

  • Kim Yang-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.1-6
    • /
    • 2005
  • Stick type ignition coil is new development that connect directly with ECU(Electronic control unit), without needing a spark plug cable and distributor. Glass-fiber reinforced ploymeric composites provide the desirable properties of high stiffness and strength as well as low specific weight. Stick type ignition coil jacket is using PBT CF30 resin. PBT CF30 resin is a kind of electric insulation which is a superior engineering plastic that is used to prevent the leakage of the electrical current. If PET receive a mistake of design or excessive force when HV terminal oppress on jacket, it can happen to crack. Local stress concentrations occurring on the contact surface, the contact phenomenon becomes a direct cause to the wear and failure of mechanical structures. When it is cracked, it can allow a leakage of the electrical current. So, in this study, we analyze the contact stress to PBT jacket using ANSYS program, when HV terminal oppress on jacket. We suppose PBT to be Jacket and we analyzed contact stress that happens in PET like PBT analysis method. We compared the use of PBT and PET.

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.

A Study on the Characteristics of Bearing Capacity for Rammed Aggregate Pier in Sand (사질토지반에서 짧은 쇄석다짐말뚝의 배치형태에 따른 지지력특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Young-Hun;Yoo, Woo-Hyun;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.195-198
    • /
    • 2009
  • Rammed Aggregate Pier method is intermediate foundation of deep and shallow foundation, it has been built on world wide. But the investigation and research in domestic is not accomplished. In this paper, examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from differenciate the spacing of piles, namely installed rammed aggregate pier. Strain control test was conducted to determine the bearing capacities of the piers; 20mm, 30mm and 40mm diameter drilling equipment to drill holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, the space between each piers narrowed, settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, allows greater chances to have resistance to deformation, shows improved stability of structures.

  • PDF

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

A study on the Vibration Damping of a gun barrel using Dynamically Tuned Shroud (차열관을 이용한 포신의 진동 감쇠에 대한 연구)

  • Koh, Jae-Min;Kim, Kyeon-Sik;Kim, Jin-Woo;Jung, Hyun-Woo;Hwang, Jai-Hyuk;Bae, Jai-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.28-36
    • /
    • 2010
  • Current tanks have been developed to increase mobility and firepower, and its maximum range and destructive power are improved. This great change causes remained vibration of a gun barrel after firing. For this reason, people are trying to control vibration of gun barrel effectively. This thesis presents a modeling method and analysis results for gun barrel by using a thermal shroud as an absorber mass. DTS(Dynamically Tuned Shroud) is a vibration damping system using a thermal shroud as an added mass for decreasing remained vibration. The model has an advantage that the gun barrel's vibration can be decreased by dissipating a kinetic energy of thermal shroud without install an additional dynamic absorber to tip of the gun barrel. For analyzing the damping performance of the DTS, We derived an equation of motion of the barrel after setting a mathematical modeling, and found out the frequency analysis and tendency according to stiffness ratio between barrel and shroud.

  • PDF

Analysis of Shifting Transients with Emphasis on the Modeling of a Torque Converter (토크 컨버터의 모델링을 중심으로 한 변속과도 특성해석)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The torque converter, an important component of automatic transmissions, is a hydrodynamic device which has a great influence on transient characteristics of vehicle during shift. To predict the accurate driving performance in extremely transient state such as shifting process, a detailed analysis of the torque converter is required. In this study, one dimensional performance model of the torque converter based on the concept of mean flow path, was used to analyze the shifting transients and the exact values of equivalent parameters were determined from the experimental results by using BOX program. The dynamic modelings of the components of power transmission systems such as engines, planetary gear systems, clutches and one-way clutches, were carried out. To analyze the shifting transients of tracked vehicle, a simulation program was developed. In the modeling of power transmission systems, the stiffness of shafts was neglected and shifting control logic(TCU) was included. Using the developed simulation program, the driving conditions were simulated and the results of simulation were verified through the experiments on the dynamometer.

The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges (2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가)

  • Bae Doo-byong;Cho Joon-hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Quality Characteristics of Sponge Cake by Black Soybean Powder of Different Ratios (검은콩 분말의 배합비를 달리한 스펀지 케이크의 제조 및 품질 특성)

  • Jeong, Hyun-Chul;Yoo, Seung-Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In order to determine the most effective ratio of black soybean powder as an ingredient in cake, black soybean power was added at ratio of 10, 20, 30, and 40% versus wheat flour set as 0(control). Black soybean powder consisted of moisture(8.44%), crude protein(31.34%), crude fat(6.64%), crude ash(3.88%) and carbohydrates(49.70%). The specific gravity, spreadability, and baking loss increased according to the amount of black soybean powder, although specific volume decreased. The chromaticity 'L' and 'b' values of sponge cake with black soybean powder showed an reducing trend while the 'a' value displayed an increasing trend with an increase in black soybean powder. The texture properties of sponge cake with added black soybean powder showed an increasing trend in hardness and stiffness when the cake contained more black soybean powder. The sensory test for sponge cake with added black soybean powder showed high preference for 20% added black soybean powder to sponge cake.

Numerical and Experimental studies on pipeline laying for Deep Ocean Water (해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구)

  • JUNG DONG-HO;KIM HYOUN-JOO;KIM JIN-HA;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF