• Title/Summary/Keyword: Stick Motion

Search Result 79, Processing Time 0.022 seconds

Kinematic Analysis of Drag Flick Shooting Motion for Training Shooters Specializing in Penalty Corners in Women's Field Hockey: A Case Study (여자 필드하키 페널티코너 전문 슈터 양성을 위한 Drag Flick 슈팅 동작의 운동학적 분석: 사례 연구)

  • Park, Jongchul;Byun, Kyungseok;Kim, Eonho
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2019
  • Objective: This study aims to propose an efficient technical model through a kinematic analysis of field hockey drag flick shooting motion in laboratory situations and game situations and to build up the basic data on drag flick shooting technique through a comparative analysis of a Korean specialized shooter and specialized shooters of competing Asian countries. Method: This study selected one Korean female national specialized shooter and seven specialized shooters of competing countries, China, Japan, India, and Malaysia, who participated in the 2018 Asian Hockey Champions Trophy as research subjects. In exercise situations, a 3-D motion analysis utilizing an infrared camera was conducted, while in game situations, an image-based 3-D motion analysis utilizing a digital camera was conducted. Results: The Korean specialized shooter had smaller changes in the angles of the trunk and the stick in game situations than in exercise situations. She had a high angular velocity of the trunk and the stick head, and the maximum speed of the ball was high. The Korean specialized shooter had the maximum angular velocity of the trunk higher than the specialized shooters of the competing countries did, and the angular velocity of the stick head and the maximum speed of the ball were in the average level. Conclusion: As for drag flick shooting in game situations, changes in the angle of the trunk and the stick were small, and the angular velocity was high due to the pressure that the shooters should perform the motion fast with the defenders' interruptions, and this high angular velocity of the trunk and the stick head affected the movement of the ball. Thus, the maximum speed of the ball was higher in game situations than in exercise situations. The Korean specialized shooter had the maximum angular velocity higher than the specialized shooters of the competing countries did; however, the maximum speed of the ball was average, and it turned out that the maximum speed of the ball was associated with the angular velocity of the stick head in P3. Therefore, Korean specialized shooters need complementary training for a change to the torque of the stick head, using the strong torque of the trunk.

Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect (자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어)

  • Lee, Sang-Deok;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

Study on the reduction of stick-slip noise in acrylonitrile butadiene styrene-based plastics using non-polar additives to reduce friction (마찰 저감을 위한 비극성 첨가제에 따른 acrylonitrile butadiene styrene계 플라스틱의 stick-slip 이음 저감 연구)

  • Sangjun Yeo;Yewon Jeong;Sunguk Choi;Hyojun Kim;Geonwook Park;Minyoung Shon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • Recently, the electric vehicle market is gradually growing due to strengthened environmental regulations and high oil prices. also, in internal combustion engine vehicles, the sensitivity of Buzz, Squeak, Rattle (BSR) noise is increasing as engine Noise, Vibration, and Harshness (NVH)-related noise is reduced and technology for shielding noise coming from outside is developed. In this study, the stick-slip noise that occurs in Panoramic Curved Display (PCD) of automobile was analyzed for the correlation between the surface energy of polymer plastic and the polar component. For polar polymer materials, Acrylonitrile Butadiene Styrene (ABS) and PolyCarbonate-Acrylonitrile Butadiene Styrene (PC-ABS), compound materials were fabricated and evaluated. As a result, when the polar component of the polymer plastic was 3.86 mN/m or higher, stick-slip motion occurred, and as the absolute transition slope increased in the friction behavior over time, the possibility of stick-slip noise increased and the value of the friction coefficient The greater the difference, the greater the strength of the stick-slip noise.

Modelling and Development of Control Algorithm of Endoscopy

  • Ma, Weichao;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In this paper, basic backgrounds about capsule endoscopy are introduced, and the aims and objectives are also illustrated. Methodology and mathematical model for LuGre model were investigated to analyse system characteristics. A nonlinear friction model, the stick-slip motion system based on LuGre friction model was used to simulate the motion of capsule endoscopy inside human body. Under the different situation, LuGre friction model was simulated by Matlab Simulink software. The entire cycle of motion and the influence of parameters towards to velocity are fully simulated.

  • PDF

Human motion recognition and application using Kinect sensor (Kinect 센서를 사용한 인체동작인식 및 활용)

  • Jeong, Jong-Hun;Han, Man-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.625-626
    • /
    • 2013
  • This paper introduces a new method that detects human motions using a Kinect sensor. Also this paper describes a method to mimic the detected human motions. We first build a human stick model by processing the output of Kinect sensor. We detect a specific motion by using the position of each joint of the human stick model and by using the angles between joints.

  • PDF

Kinematic Analysis of a Scoop Motion in Elite Male Hockey Players (남자 우수하키 선수들의 스쿱 동작에 관한 운동학적 분석)

  • Lim, Jung-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.481-488
    • /
    • 2009
  • The purpose of this study was to investigate the hokey scoop motion of elite male hockey players. To accomplish the goal of this study, eight male hockey players participated and were divided into two groups (superior group Vs. inferior group). To find differences between groups, a three-dimensional motion analysis was performed with seven infrared cameras (SF: 200Hz). After analyzed their scoop motion, followings were found. 1) The non-significant(p>.05) increase in anterior CG displacement and velocities were found in superior group compare with inferior group) 2) There were no significance found in anterior-posterior stick velocities between groups. However, significant (p<.05) increase in vertical stick velocities were found in superior group than inferior group indicating the superior group has more skilled in scooping. 3) The significant(p<.05) increase in adductional and internal rotational stick released velocities were found in superior group than inferior group.

A Study on Optimal Design of Perpendicular Guideway Mechanism (수직 이송계의 최적 설계에 관한 연구)

  • 이석우;최헌종;황보승;김대중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.982-986
    • /
    • 2000
  • Perpendicular guideway mechanism has a different behavior with horizontal guideway mechanism due to the slider weight. So, to decrease its weight effect, counter balances such as weight type and hydraulic cylinder type are used. But it can also make another motion behavior by weight rate of slider and counter balance, its connected position. Therefore, it is necessary to find design parameters and analyze their effect. This paper dealt with the optimal design of perpendicular guideway mechanism. For analysis, the theoretic model as same as real machine tool and sib plate to adjust the clearance was used. Rotational angle and displacement of slider, pressure distribution, friction distribution were calculated. Stick slip, intermittent motion of slider according to friction change was adapted to the perpendicular guideway mechanism.

  • PDF

A Study on Improvement of the Stick-slip Induced an Effect Decrease of the Table Weight (테이블 중량 감소 효과에 따른 스틱슬립 개선에 관한 연구)

  • 홍성오;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.7-14
    • /
    • 2002
  • In order to achieve high precision machine tools, the research for performance enhancement of feed drive systems is required. Development of the high speed feed drive system has been a major issue for the past few decades in machine tool indestries. Because table levitation system decrease the table weight, an effect of reaction by weight is minimized and lost motion can be removed at maximum. In case fled system is designed with drive motor, ball screw and support bearing load capacity selection, an effect of decrease of the table weight exist. So, the table weight through an effect of decrease call it into the realization of cost down. Stick-slip friction has a great influence on the contouring accuracy of CNC machine tools. In this paper table levitation system has been developed for the stick-slip in a fled drive systems.

Development of a New Inchworm Actuation System U sing Piezoelectric Shearing Actuators (전단압전가진기를 이용한 인치웜 가진시스템의 개발)

  • Lee, Sang-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents the development of a new inchworm actuation system using the shearing deformation of the piezoelectric actuators. In this new actuation system, piezoelectric shearing/expanding actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two modes in the new actuation system: (1) stick mode, and (2) clamp mode. In stick mode, the deformation of the piezoelectric shearing actuators drives an inertial mass by means of the friction force at their contact interface. On the other hand, in clamp mode, the piezoelectric expanding actuators provide the gripping force to an inertial mass and, as a result, eliminate its backward motion following the rapid backward deformation of the piezoelectric shearing actuators. To investigate the feasibility of the proposed new actuation system, the experimental system is built up, and the static performance evaluation and dynamic analysis are conducted. The open-loop performance of the linear motion of the proposed new actuation system is evaluated. In dynamic analysis, the mathematical model for the contact interface is established based on the LuGre friction model and the equivalent parameters are identified.