• Title/Summary/Keyword: Steroid isomerase activity

Search Result 6, Processing Time 0.018 seconds

${\gamma}-ray$ Effects on Steroid Hormone Concentration of Mouse Ovarian Follicles (생쥐의 난소내 스테로이드호르몬 농도에 미치는 ${\gamma}$-선의 영향)

  • Lee, Young-Keun;Kim, Jin-Kyu;Yoon, Yong-Dal
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.179-188
    • /
    • 1994
  • Mice were whole body irradiated with dose of 2.88Gy and 7.2Gy(Co-60) in order to observe the morphological and functional changes in radio sensitive mouse ovary. Microtechnical sectionates of $7{\mu}m$ thickness from ovary were made for light microscopy and concentrations of progesterone, testosterone and estradiol in ovarian homogenates were analyzed by radioimmunoassay. Gamma radiation resulted in the increase of atretic ratio of preantral and antral follicles, the increase of progesterone concentration in ovarian homogenates, and the low level of testosterone and estradiol. It is suggested that radiation protect the activity of $3{\beta}-HSD$(hydroxysteroid dehydrogenase) and isomerase in the follicular theca cell followed by low level of testosterone and estradiol and thereafter follicular atresia proceed.

  • PDF

Contribution of a Low-Barrier Hydrogen Bond to Catalysis Is Not Significant in Ketosteroid Isomerase

  • Jang, Do Soo;Choi, Gildon;Cha, Hyung Jin;Shin, Sejeong;Hong, Bee Hak;Lee, Hyeong Ju;Lee, Hee Cheon;Choi, Kwan Yong
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. ${\Delta}^5$-3-ketosteroi isomerase (KSI) catalyzes the allylic isomerization of ${\Delta}^5$-3-ketosteroid to its conjugated ${\Delta}^4$-isomers at a rate that approache the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 $O{\eta}$ and C3-O of equilenin an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 $O{\eta}$ and C3-O of the bound steroi was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.

Functional Studies of Cysteine Residues in Human Glutathione S-Transferase P1-1 by Site-Directed Mutagenesis

  • Park, Hui Jung;Lee, Gwang Su;Gong, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • To gain further insight into the relationship between structure and function of glutathione S-transferase (GST), the four cysteine mutants, C14S, C47S, C101S and C169S, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized glutathione (GSH). The catalytic activities of the four mutant enzymes were characterized with five different substrates as well as by their binding to four different inhibitors. Cys14 seems to participate in the catalytic reaction of GST by stabilizing the conformation of the active-site loop, not in the GSH binding directly. The substitution of Cys47 with serine significantly reduces the affinity of GSH binding, although it does not prevent GSH binding. On the other hand, the substitution of Cys101 with serine appears to change the binding affinity of electrophilic substrate by inducing a conformational change of the $\alpha-helix$ D. Cys169 seems to be important for maintaining the stable conformation of the enzyme. In addition, all four cysteine residues are not needed for the steroid isomerase activity of human glutathione S-transferase P1-1.

Functional Studies of Tyrosine 108 Residue in the Active Site of Human Glutathione S-Transferase P1-1

  • Park, Hee-Joong;Koh, Jong-Uk;Ahn, So-Youn;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.433-439
    • /
    • 2005
  • To gain further insight on the relationship between structure and functions of glutathione S-transferase (GST), the three tyrosine 108 mutants, Y108A, Y108F, and Y108W, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitution of Tyr 108 with alanine resulted in significant decrease of the GSH-conjugation activity and the GSH peroxidase activity, but approximately 63% increase of steroid isomerase activity toward ${\Delta}^5$–[androstene 3,17-dione. On the other hand, the substitution of Tyr 108 with phenylalanine resulted in decreases of $k_{cat}\;and\;k_{cat}/K_m{^{EPNP}}$ by 2 orders of magnitude, suggesting that Tyr 108 residue of hGSTP1-1 are considered to be important for the catalysis and the binding of the epoxide substrates. The substitution of Tyr 108 with tryptophan resulted in significant decreases of the specific activities toward EPNP, cumene hydroperoxide and ${\Delta}^5$–ndrostene 3,17-dione, but approximately 2-fold increase on the enzyme-catalyzed addition of GSH to DCNB. We conclude from these results that Tyr 108 in hGST P1-1 plays very different roles depending upon the nature of the electrophilic substrates.

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.