• Title/Summary/Keyword: Stern waves

Search Result 41, Processing Time 0.019 seconds

Numerical investigation on the wave interferences of submerged bodies operating near the free surface

  • Li, Dong;Yang, Qun;Zhai, Lin;Wang, Zhen;He, Chuan-lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2021
  • A key factor that governs the wave interferences of a submerged body is the dimensionless Froude number. Computational Fluid Dynamics (CFD) is used to describe the resistance force coefficients and the generated waves of two SUBOFF submarine models. Grid independence studies are performed on two cases, totally and shallowly submerged cases, with four sets of computing meshes. The highest peaks are marked by red points at given wavelengths, a line is fitted to those points with a least-squares approximation, and the half wake angle at multiple Froude numbers is defined between the fitted line and the centerline of the free surface. The results show that when the depth of the target is 1.1D, constructive interferences occur at Fn = 0.3 and 0.5, while destructive interference occurs at Fn = 0.35 with distortion of the waveform. The half wake angle is less than 19.47° because of the interference between the bow and stern wave systems.

Solitary Wave-like Ship Induced Waves and Its Associated Currents in a Water Channel of Narrow Width (협수로에서 생성되는 고립파 형태의 항주파와 항주파류)

  • Cho, Yong Jun;Choi, Han Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.202-216
    • /
    • 2015
  • In the narrow water channel, which has been frequently deployed in the artificial canal in the South Korea due to the lack of available land, solitary wave type ship induced waves can occur. In order to test this hypothetical view, we carried out the numerical simulation. Numerical model consists of Navier-Stokes Equations and VOF, and the verification is implemented using the data by PIANC (1987) and the analytical model derived in this study. It was shown that numerically simulated front wave height are much larger than the one by PIANC (1987), and the fluctuation of free surface near the channel bank persists much longer (around 20s). For the case of stern waves, numerically simulated wave height are somewhat smaller than the data by PIANC (1987). These results seriously deviates from the general characteristics of ship induced waves observed in the wide water channels, and leads us to conclude that ship induced waves is severely affected by the width of water channel. It was also shown that the currents from the channel banks toward a ship, and currents from the ship toward the channel banks are alternatively occurring due to reflection at the channel banks. The velocity of currents reaches its maximum at 0.90 m/s, and these values are sustained through the entire depth. which implies that severe scourings at the channel bottom can be underway.

Recent Application of CFD in ship Hydrodynamics

  • Kawamura, Takafumi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.321-326
    • /
    • 2008
  • The engineering use of CFD is recently extending to the prediction of maneuvering characteristics, response to waves, propeller performance, and so on. The focus of the research is shifting to simulation of more complex processes. Typical examples of such processes are bow or stern slamming, green water problem, propeller cavitation, hull-propeller interaction, or drag reduction by bubble injection. Those processes are characterized by keywords such as high nonlinearity, unsteadiness, multiphase flow. In this paper, two new attempts which have been recently made by the author's research grop are presented. One is the prediction of propeller cavitation and its effect to the ship hull. The others is the application to the drag reduction by use of air bubbles.

  • PDF

Recent Application of CFD in Ship Hydrodynamics

  • Kawamura, Takafumi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.321-326
    • /
    • 2008
  • The engineering use of CFD is recently extending to the prediction of maneuvering characteristics, response to waves, propeller performance, and so on. The focus of the research is shifting to simulation of more complex processes. Typical examples of such processes are bow or stern slamming, green water problem, propeller cavitation, hull-propeller interaction, or drag reduction by bubble injection. Those processes are characterized by keywords such as high nonlinearity, unsteadiness, multiphase flow. In this paper, two new attempts which have been recently made by the author's research group are presented. One is the prediction of propeller cavitation and its effect to the ship hull. The other is the application to the drag reduction by use of air bubbles.

  • PDF

A time-domain analysis for a nonlinear free-surface problem (시간영역에서의 비선형 자유표면파문제에 대한 수치해석)

  • Kyoung Jo Hyun;Bai Kwang June;Chung Sang Kwon;Kim Do Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF

An Experimental Study on the System Identification and Anti-Rolling System Design for a Ship with Flaps (선미측에 플랩을 갖는 선박의 동특성 규명과 횡동요 제어계 설계)

  • 김영복;강귀봉;채규훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • We have investigated the usefulness of an active stabilizing system to reduce ship rolling under disturbances, using varying reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps, as the actuator, are installed on the stern, in order to reject the rolling motion induced by disturbances, such as waves. The action induced by the flaps, which is dependent upon the power of the disturbances, can keep the ship in balance. In this study, we define the system parameters under the given system structure, using spectral analysis and experimental studies. Based on this information, we design the controller to evaluate the usefulness of the proposed system.

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.

Prediction of Extreme Ship Motions in Following and Quartering Seas (선미파, 선미사파를 받는 선박의 과도 운동 추정에 대한 연구)

  • Kwon, Chang-Seop;Yeo, Dong-Jin;Rhee, Key-Pyo;Yoon, Sang-Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.1-7
    • /
    • 2007
  • Recently, researches to find rational mathematical model for prediction of capsizing have been progressed by ITTC. Lee(1997) developed a mathematical model which describes 6 DOF transient motions, such as capsizing, of a ship in regular waves. In this study a mathematical model for prediction of capsizing in following and quartering seas is developed based on Lee's model. And factors affecting prediction of capsizing are analyzed through comparing simulation results with experimental results. Present simulation results are compared with ITTC bench mark test results. In rolling tests with beam seas and tree runs with stern quartering seas, capsizing events are predicted well. But calculated roll angle is larger than experimental one. It is found that nonlinear manoeuvring coefficients don't affect the prediction of capsizing events.

Effects of Waves and Free-Surface Boundary Conditions on the Flow A Surface-Piercing Flat Plate (수면 관통 평판주위 유동에 미치는 파의 영향 및 자유표면 경계조건에 대한 연구)

  • Choi, Jung-Eun;Stern, F.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • Computational results from Navier-Stokes equations are presented for the Stokes-wave/flat-plate boundary-layer and wake for small wave steepness(Ak=0.01), including exact and approximate treatments of the viscous free-surface boundary conditions. The macro-scale flow indicate that the variations of the external-flow pressure gradients cause acceleration or deceleration of the streamwise velocity component and alternating direction of the cross flow. Remarkably, the wake displays a greater response, i.e., a bias with regard to favorable as compared to adverse pressure gradients. The micro-scale flow indicates that the free-surface boundary conditions have a profound influence over the boundary layer and near/intermediate wake. Order-of-magnitude estimates are conformed to the computational results. And appreciable errors are introduced through approximations to the free-surface boundary conditions.

  • PDF

Application of the Overset Grid Scheme (Suggar++) for Flow Analysis around a Ship (선박의 유동해석 문제에 대한 중첩격자기법(Suggar++)의 활용)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Recent CFD solvers in engineering have to treat geometrically complex domains and moving body problems. In ship hydrodynamics, flow around the stern and ship motions in waves are examples of such cases mentioned before. The unstructured grid scheme is successfully applied for these problems, but it has weakness of inefficient memory usage and intensive computational time as compared to the structured grid method. Overset grid scheme is one of the alternatives for structured grid system taking advantage of fast and memory efficiency. Overset grid scheme is especially useful for moving body problem because there is no need to re-mesh around the body. In this paper, we adopted the Suggar++, the grid connectivity and interpolation utility for the overlapping grid, to WAVIS which is the in-house flow solver of KRISO. Then we introduced some applications using the overset grid method for flow analysis around the ships. The computed results show that WAVIS with Suggar++ is practically feasible and has an advantages for moving geometry cases.