• 제목/요약/키워드: Stern quartering seas

검색결과 6건 처리시간 0.02초

Validation of time domain seakeeping codes for a destroyer hull form operating in steep stern-quartering seas

  • Van Walree, Frans;Carette, Nicolas F.A.J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.9-19
    • /
    • 2011
  • The paper describes the validation of two time domain methods to simulate the behaviour of a destroyer operating in steep, stern-quartering seas. The significance of deck-edge immersion and water on deck on the capsize risk is shown as well as the necessity to account for the wave disturbances caused by the ship. A method is described to reconstruct experimental wave trains and finally two deterministic validation cases are shown.

선미파, 선미사파를 받는 선박의 과도 운동 추정에 대한 연구 (Prediction of Extreme Ship Motions in Following and Quartering Seas)

  • 권창섭;여동진;이기표;윤상웅
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Recently, researches to find rational mathematical model for prediction of capsizing have been progressed by ITTC. Lee(1997) developed a mathematical model which describes 6 DOF transient motions, such as capsizing, of a ship in regular waves. In this study a mathematical model for prediction of capsizing in following and quartering seas is developed based on Lee's model. And factors affecting prediction of capsizing are analyzed through comparing simulation results with experimental results. Present simulation results are compared with ITTC bench mark test results. In rolling tests with beam seas and tree runs with stern quartering seas, capsizing events are predicted well. But calculated roll angle is larger than experimental one. It is found that nonlinear manoeuvring coefficients don't affect the prediction of capsizing events.

On the non-linearities of ship's restoring and the Froude-Krylov wave load part

  • Matusiak, Jerzy Edward
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.111-115
    • /
    • 2011
  • When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the nonlinearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with the simulation of ship motions in irregular stern quartering waves.

On the mitigation of surf-riding by adjusting center of buoyancy in design stage

  • Yu, Liwei;Ma, Ning;Gu, Xiechong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.292-304
    • /
    • 2017
  • High-speed vessels are prone to the surf-riding in adverse quartering seas. The possibility of mitigating the surf-riding of the ITTC A2 fishing vessel in the design stage is investigated using the 6-DOF weakly non-linear model developed for surf-riding simulations in quartering seas. The longitudinal position of the ship's center of buoyancy (LCB) is chosen as the design parameter. The adjusting of LCB is achieved by changing frame area curves, and hull surfaces are reconstructed accordingly using the Radial Basis Function (RBF). Surf-riding motions in regular following seas for cases with different LCBs and Froude numbers are simulated using the numerical model. Results show that the surf-riding cannot be prevented by the adjusting of LCB. However, it occurs with a higher threshold speed when ship's center of buoyancy (COB) is moved towards stem compared to moving towards stern, which is mainly due to the differences on wave resistance caused by the adjusting of LCB.

Numerical Analysis of Added Resistances of a Large Container Ship in WavesNumerical Analysis of Added Resistances of a Large Container Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.83-101
    • /
    • 2017
  • In this study, the added resistances of the large container ship in head and oblique seas are evaluated using a time-domain Rankine panel method. The mean forces and moments are computed by the near-field method, namely, the integration of the second-order pressure directly on the ship surface. Furthermore, a weakly nonlinear approach in which the nonlinear restoring and Froude-Krylov forces on the exact wetted surface of a ship are included in order to examine the effects of amplitudes of waves on ship motions and added resistances. The computation results for various advance speeds and heading angles are validated by comparing with the experimental data, and the validation shows reasonable consistency. Nevertheless, there exist discrepancies between the numerical and experimental results, especially for a shorter wave length, a higher advance speed, and stern quartering seas. Therefore, the accuracies of the linear and weakly nonlinear methods in the evaluation of the mean drift forces and moments are also discussed considering the characteristics of the hull such as the small incline angle of the non-wall-sided stern and the fine geometry around the high-nose bulbous bow.

선미식 트롤선의 추파중 선체동요특성에 관한 연구 (A Study on the Characteristics of Motion Response of Stern Trawlers in Following Seas)

  • 강일권;박병수
    • 수산해양기술연구
    • /
    • 제38권3호
    • /
    • pp.226-233
    • /
    • 2002
  • 불규칙 해면에 있어서 선미식 트롤선의 추파중의 선체 응답의 특성을 얻기 위하여 3척의 실선운동을 해상에서 계측하고, 이것을 통계적 방법과 이론적인 방법을 이용하여 분석하였으며, 그 결과를 요약하면 다음과 같다. 1. 각 선박의 종동요의 응답의 에너지분포는 추파와 추사파에서 모두 대체로 낮으며, 특히 선박의 크기가 클수록 매우 낮았다 응답스펙트럼의 대역폭은 모두 넓은 편이며, 응답 peak의 주기는 분명하지 않으며, 한 개 이상 나타나는 때도 있다. 2. 각 선박의 횡동요 응답의 에너지 분포는 추파와 추사파에서 모두 크며, 특히 소형선에서는 매우 크다. 응답스펙트럼의 대역폭은 종동요의 응답에 비해 비교적 좁은 편이며, 응답의 peak 주기는 분명하고 한개만 나타난다. 3. 실선실험과 이론계산에 의한 세 선박의 추파와 추사파 중의 종동요와 횡동요응답의 크기와 peak주기는 대체로 양자가 잘 일치하고 있는 것으로 나타나고 있다. 따라서 이론추정치로부터 어선의 응답특성을 평가하는데 큰 문제는 없는 것으로 생각된다. 4. 소형선의 경우 종동요 응답만 고려하면 선미쪽으로 파를 받는 것이 유리하나, 횡동요의 경우에는 오히려 불리하게 되므로 선미쪽으로 파를 받는 경우에는 유의파고와 평균파주기에 따른 자선의 복원성을 고려하는 등 안전에 보다 세심한 주의가 필요하다. 이상과 같이 추파와 추사파 중 선박 크기에 따른 종동요와 횡동요의 응답 특성을 고찰해 보았으나, 이 결과는 제한된 해상의 조건에서 얻어진 것이므로 어선의 일반적인 응답 특성을 도출해내기 위해서는 보다 다양한 해상 조건과 선박을 이용하여 더 많은 연구가 이루어져야 할 것으로 사료된다.