• 제목/요약/키워드: Stern model

검색결과 171건 처리시간 0.02초

얇은 배에 대한 고차 조파저항 계산 (Second-Order Wave Resistance Calculation of Thin-Ship)

  • 강신형
    • 대한조선학회지
    • /
    • 제16권3호
    • /
    • pp.35-47
    • /
    • 1979
  • Wave resistance of a parabolic thin ship, with its boundary layer and wake taken into account, was calculated up to second order. In addition to the double-model source distribution on the centerplane, image sources of the wave potential were calculated to keep the body introduced boundary condition undisturbed. Boundary layer and wake effects on the wave-making resistance were included by generating an irrotational flow which matches that exterior to the boundary layer and wake. For this purpose, the boundary layer and wake were calculated. The wave resistance refined with second-order corrections are found to be very important for wave resistance calculations even at moderate Froude numbers($Fr=0.2{\sim}0.3$). Wave-potential corrections are dominate around the bow. On the other hand, Viscosity plays and important role at the stern with its boundary layer and wake development.

  • PDF

포텐셜 기저 패널법에 의한 프로펠러 보호터널의 형상변화에 관한 연구 (Study on tunnel geometry protecting a propeller using potential based panel method)

  • 서성부
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.614-621
    • /
    • 2007
  • The fishing boat propulsion system employing the modified stern shape and the tunnel to protect a propeller is developed to increase the cruise speed and reduce he problem resulting from the open propeller accidentally catching the waste net and able on the sea. Using 3 different tunnel types, the model test was performed in the circular water channel and the panel method based on the potential theory is applied to analyze the open water performance of the propeller. In the numerical analysis using he potential-based panel method, it calculates the hydrodynamic interaction between the propeller and the tunnel and evaluates the effect of the tunnel geometry. From the numerical and experimental results differing tunnel geometries, the propulsion efficiency is increased by the larger diameter of the inlet than the outlet of the tunnel and the smaller gap between the propeller tip and the tunnel internal surface. These results provide the information of the propeller system with the tunnel and the hydrodynamic interaction between the propeller and the tunnel.

A Computational Study on Turbulent Flow Characteristics around Full-form Tankers

  • Van, Suak-Ho;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • 제2권2호
    • /
    • pp.1-13
    • /
    • 1996
  • This paper presents the result of a computational study on the wake characteristics of two tanker models, i.e. HSVA and Mystery hull forms. The focus of the study is on the distributions of axial, radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull farms, the incompressible Reynolds-Averaged Wavier-Stokes(RANS) equations are numerically solved by the second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial, radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution fur the both hull forms.

  • PDF

Some practical design aspects of appendages for passenger vessels

  • Jang, Hag-Soo;Lee, Hwa-Joon;Joo, Young-Ryeol;Kim, Jung-Joong;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.50-56
    • /
    • 2009
  • The hydrodynamic effect of appendages for high-speed passenger vessels, such as Ro-Pax, Ro-Ro and cruiser vessels, is very severe and, therefore, it is essential to carry out the design of appendages for high-speed passenger vessels from the preliminary design stage to the final detail design stage through a full survey of the reference vessels together with sufficient technical investigation. Otherwise, many problems would be caused by mismatches between the appendages and the hull form. This paper investigates the design characteristics of some appendages, such as the side thruster, the shaft-strut, and the stern wedge, based on the design experience accumulated at Samsung, on CFD, and on model test results for high-speed passenger vessels. Further to this investigation, some practical and valuable design guidelines for such appendages are suggested.

파랑관통형 고속활주선 선형개발에 관한 연구 (Study of Hull Form Development of Wave-Piercing-Type High-Speed Planing Boat)

  • 정우철;이동건;정기석
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.69-74
    • /
    • 2016
  • A new wave-piercing-type high-speed planing boat without a chine was developed, and its basic performance was investigated in a model test, including the resistance, trim, and sinkage. The maximum speed of the developed ship was 35 knots. The hull form was developed by combining a VSV (very slender vessel) and TH (transonic hull), which have large deadrise angles at the bow. The main dimensions were estimated by a statistical approach using actual ship data. The effect of a side fin attached at the stern near the water line was investigated from a resistance point of view. It was found that the developed hull form showed the possibility of a new concept for a high-speed planing hull without a chine, and the side fin played an important role in increasing the resistance performance by controlling the trim and sinkage in the high-speed range.

해안구조물 전면의 Stem Wave특성에 관한 연구 (A Study on the Characteristics of the Stem Wave in front of the Coastal Structure)

  • 박효봉;윤한삼;류청로
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.25-31
    • /
    • 2003
  • Numerical experiments have been conducted using the nonlinear combined refraction-diffraction model, in order to analyze the generation characteristics of stem wave, which is formed by the interaction between vertical structure and the oblique incident waves. The results of stem wave are discussed through the stem wave height distribution along/normal vertical structure, under the wide range of incident wave conditions-wave heights, periods, depths, and angles. Under the same wave height and period, the larger the incident wave angle, the higher the stem wave heights. According to the results of wave height distribution, in front of vertical structure, the maximum of stern wave heights occurs in the location bordering the vertical wall. Furthermore, the most significant result is that stem waves occur under the incident angles between $0^{\circ}\;and\;30^{\circ}$, and the stem wave height ratio has the maximum value, which is approximately 1.85 times the incident wave height when the incident wave angle becomes $23^{\circ}$.

On the mitigation of surf-riding by adjusting center of buoyancy in design stage

  • Yu, Liwei;Ma, Ning;Gu, Xiechong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.292-304
    • /
    • 2017
  • High-speed vessels are prone to the surf-riding in adverse quartering seas. The possibility of mitigating the surf-riding of the ITTC A2 fishing vessel in the design stage is investigated using the 6-DOF weakly non-linear model developed for surf-riding simulations in quartering seas. The longitudinal position of the ship's center of buoyancy (LCB) is chosen as the design parameter. The adjusting of LCB is achieved by changing frame area curves, and hull surfaces are reconstructed accordingly using the Radial Basis Function (RBF). Surf-riding motions in regular following seas for cases with different LCBs and Froude numbers are simulated using the numerical model. Results show that the surf-riding cannot be prevented by the adjusting of LCB. However, it occurs with a higher threshold speed when ship's center of buoyancy (COB) is moved towards stem compared to moving towards stern, which is mainly due to the differences on wave resistance caused by the adjusting of LCB.

컨테이너선의 유탄성 응답을 고려한 구조강도 평가 기술 (Structural Assessment of Container ships Considering Hydroelastic Responses)

  • 박준석;최병기;최주혁;정병훈
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.80-87
    • /
    • 2017
  • This paper is related to structural assessment considering the hydroelastic response of ultra large container ships, especially from whipping (bow or stern impacts) and from springing (resonance). In general, whipping contributes both to increased fatigue and extreme loading, while springing does mainly contribute to increased fatigue loading. To evaluate the hydroelastic response quantitatively with high accuracy, numerical code considering hydro-structure coupling was applied and fatigue strength of a 13,100 TEU class containership was verified. The segmented model test and full scale measurement were also needed to assess the effect of whipping and springing on the fatigue and extreme capacity in more realistic way and for verification of the numerical tools. With reference to class rule, fatigue assessment considering springing effect and extreme assessment considering whipping effect were introduced.

  • PDF

PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증 (Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200)

  • 박성국;이필엽;박상웅;권순태;정훈상;박민수
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.