• Title/Summary/Keyword: Step-by-step Method

Search Result 6,027, Processing Time 0.033 seconds

Four Representative Applications of the Energy Shaping Method for Controlled Lagrangian Systems

  • Ng, Wai Man;Chang, Dong Eui;Song, Seong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1579-1589
    • /
    • 2013
  • We provide a step-by-step, easy-to-follow procedure for the method of controlled Lagrangian systems. We apply this procedure to solve the energy shaping problem for four benchmark examples: the inertial wheel pendulum, an inverted pendulum on a cart, the system of ball and beam and the Furuta pendulum.

A 4-step Inference Method for Natural Language Propositions Involving Fuzzy Quantifiers and Truth Qualifiers

  • Okamoto, Wataru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.579-582
    • /
    • 2003
  • In this paper, we propose a 4-step inference method needed for constructing a natural language communication system. The method is used to obtain fuzzy quantifier Q′when QA is Fisr τ⇔ Q′(m′A) is mF is m"is τ is inferred (Q, Q′: quantifiers, A: fuzzy subject, m′, m": modifiers, y: fuzzy predicate, τ: truth qualifier). We show that Q′is resolved step by step for two types of Q, including a non-increasing type (few,...) and a non-decreasing type(most,...).

  • PDF

Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach (한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법)

  • Yu, SeongMin;Hwang, Eunju
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.239-254
    • /
    • 2021
  • This paper studies time series analysis with estimation and forecasting for Korean COVID-19 confirmed cases, based on the approach of a heterogeneous autoregressive (HAR) model with two-piece t (TP-T) distributed errors. We consider HAR-TP-T time series models and suggest a step-by-step method to estimate HAR coefficients as well as TP-T distribution parameters. In our proposed step-by-step estimation, the ordinary least squares method is utilized to estimate the HAR coefficients while the maximum likelihood estimation (MLE) method is adopted to estimate the TP-T error parameters. A simulation study on the step-by-step method is conducted and it shows a good performance. For the empirical analysis on the Korean COVID-19 confirmed cases, estimates in the HAR-TP-T models of order p = 2, 3, 4 are computed along with a couple of selected lags, which include the optimal lags chosen by minimizing the mean squares errors of the models. The estimation results by our proposed method and the solely MLE are compared with some criteria rules. Our proposed step-by-step method outperforms the MLE in two aspects: mean squares error of the HAR model and mean squares difference between the TP-T residuals and their densities. Moreover, forecasting for the Korean COVID-19 confirmed cases is discussed with the optimally selected HAR-TP-T model. Mean absolute percentage error of one-step ahead out-of-sample forecasts is evaluated as 0.0953% in the proposed model. We conclude that our proposed HAR-TP-T time series model with optimally selected lags and its step-by-step estimation provide an accurate forecasting performance for the Korean COVID-19 confirmed cases.

A Study on Applicability of API-581 and Methodology for Consequence Analysis in High-Pressure Toxic Gas Facilities (고압 독성가스시설에서 API-581 적용성 및 사고결과 분석방법에 관한 연구)

  • Jang, Seo-Il;Kim, Youngran;Park, Kyoshik;Shin, Dongil;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.76-85
    • /
    • 2014
  • To establish the necessary safety technology in high-pressure toxic gas facilities, especially for the corrosion, which is the main causes of toxic gas accident, this study adopts and investigates the API-581 procedures developed by the American Petroleum Institute (API). And the applicability of the 8-step analytical procedures of consequence analysis in API-581 is discussed, and a method for consequence analysis in high-pressure toxic gas facilities is suggested. Based on the discussion and results, the analytical procedure is simplified as the 6 steps in total for the effective application to high-pressure toxic gas facilities: Step 1 (determination of representative material), Step 5 (determination of release type), Step 6 (determination of phase of fluid), and Step 8 (estimation of damage range) are not applied: Step 3 (estimation of total amount of release) is applied only for the inventory group concept; Step 4 (estimation of release rate) only for the gas release rate; and all of Step 2 (selection of release hole size) and Step 7 (evaluation of post-release response) are applied. In the proposed method, the generally applicable method of CCPS is adopted as alternative method for Steps 5 and 8.

Time-dependent analysis of reinforced concrete structures using the layered finite element method

  • Bradford, M.A.;Gilbert, R.I.;Sun, S.C.H.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.561-578
    • /
    • 1999
  • The response of a reinforced concrete structure to loading is both immediate and time-dependent. Under a sustained load, the deflections caused by creep and shrinkage may be several times their instantaneous values. The paper describes a general finite element procedure, based on the so-called layered model, to analyse reinforced concrete members, and shows in particular how the simple Step by Step Method may be incorporated into this procedure. By invoking the Modified Newton Raphson Method as a solution procedure, the accuracy of the finite element method is verified against independent test results, and then applied to a variety of problems in order to demonstrate its efficacy. The method forms a general method for analysing highly indeterminate concrete structures in the time domain.

Transformation Characteristics of Multi layed Ring-dot type Piezo Transformer (적층형 Ring-dot type 압전변압기의 변압특성)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.671-674
    • /
    • 2004
  • This paper presents design and analysis of multi-layered ring-dot type piezoelectric transformer. These transformers are useful for step up and step down. The transformers consist of disk type multi-layered piezoelectric ceramic plates. The finite element method(FEM) was used for analysis transformer. Vibration mode, electric field and equivalent elastic strain of piezoelectric transformer were simulated by changing frequency. As results, the strain was distributed in isolation part entirely. We can get the operated in step up transformer when the inner side electrode using by input parts. Also we can get the step down transformers using by input Part as outer side electrode. The step up ratio and step down ratio was increased by decreasing inner side electrode. The resonance frequency was increased by increasing inner side electrode when the transformer was operated in step down transformer. But the step up one was decreased. From these results, we can expect to multi-layered ring-dot type piezo transformers as step up and step down transformers.

  • PDF

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kim Chul-Hwan;Heo Jeong-Yong;Kwon O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

Three Dimensional Multi-step Inverse Analysis for Optimum Blank Design in Sheet Metal Forming (박판금속성형의 최적 블랭크 설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.179-182
    • /
    • 1997
  • One-step inverse methods based on deformation theory causes some amount of error. The amount of error is generally increased as the deformation path is more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results.

  • PDF

A novel two sub-stepping implicit time integration algorithm for structural dynamics

  • Yasamani, K.;Mohammadzadeh, S.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • Having the ability to keep on yielding stable solutions in problems involving high potential of instability, composite time integration methods have become very popular among scientists. These methods try to split a time step into multiple sub-steps so that each sub-step can be solved using different time integration methods with different behaviors. This paper proposes a new composite time integration in which a time step is divided into two sub-steps; the first sub-step is solved using the well-known Newmark method and the second sub-step is solved using Simpson's Rule of integration. An unconditional stability region is determined for the constant parameters to be chosen from. Also accuracy analysis is perform on the proposed method and proved that minor period elongation as well as a reasonable amount of numerical dissipation is produced in the responses obtained by the proposed method. Finally, in order to provide a practical assessment of the method, several benchmark problems are solved using the proposed method.

Design and Performance Evaluation of Micro Stepping Actuator with a Variable Step Size (가변 스텝 마이크로 액츄에이터의 설계 및 구동특성)

  • Lim, Y.M.;Kim, S.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.26-31
    • /
    • 1995
  • A new actuating mechanism suitable for a micro positioning device is developed using piezo-electric elements. The actuator can make a step movement of 0.5 .mu. m up to 3.5 .mu. m. The step size can be adjusted on demand. By repeating this step action, long distance movement is achieved. Precise positioning can be obtained by combining the coarse motion with the maximum step size and fine motion. Two types of fine motion have been proposed for a driving method. Firstly, feedback control bases on PID is applied. The experimental results for the two method are presented.

  • PDF