DOI QR코드

DOI QR Code

고압 독성가스시설에서 API-581 적용성 및 사고결과 분석방법에 관한 연구

A Study on Applicability of API-581 and Methodology for Consequence Analysis in High-Pressure Toxic Gas Facilities

  • 투고 : 2014.07.14
  • 심사 : 2014.08.27
  • 발행 : 2014.08.31

초록

본 연구는 독성가스 사고의 주요 원인의 하나인 부식에 대해 고압 독성가스시설을 대상으로 필요한 안전기술을 정립하기 위하여 미국석유학회에서 개발한 API-581 절차를 채택하여 사고결과 분석방법에 대한 적용성을 검토하고, 이를 바탕으로 사고결과 분석방법을 제시하였다. 고압 독성가스시설에서 API-581의 8단계 사고결과 분석절차에 따라 단계별 적용성을 검토한 결과, 고압 독성가스시설에 적용할 사고결과 분석방법은 총 6단계로 단순화 할 수 있었다. 즉, Step 1(대표물질 결정), Step 5(누출유형 결정), Step 6(유체상 결정)과 Step 8(사고 피해영역 산출)은 적용하지 않고, Step 3(누출량 산출)은 inventory group 개념만 적용하며, Step 4(누출속도 산출)는 기체 누출속도만을 적용하고, Step 2(누출공 크기 선정)와 Step 7(완화시스템 등급 결정)은 전부 적용한다. 이때, Step 5와 Step 8은 일반적으로 적용이 가능한 CCPS 방법을 대안적인 방법으로 채택한다.

To establish the necessary safety technology in high-pressure toxic gas facilities, especially for the corrosion, which is the main causes of toxic gas accident, this study adopts and investigates the API-581 procedures developed by the American Petroleum Institute (API). And the applicability of the 8-step analytical procedures of consequence analysis in API-581 is discussed, and a method for consequence analysis in high-pressure toxic gas facilities is suggested. Based on the discussion and results, the analytical procedure is simplified as the 6 steps in total for the effective application to high-pressure toxic gas facilities: Step 1 (determination of representative material), Step 5 (determination of release type), Step 6 (determination of phase of fluid), and Step 8 (estimation of damage range) are not applied: Step 3 (estimation of total amount of release) is applied only for the inventory group concept; Step 4 (estimation of release rate) only for the gas release rate; and all of Step 2 (selection of release hole size) and Step 7 (evaluation of post-release response) are applied. In the proposed method, the generally applicable method of CCPS is adopted as alternative method for Steps 5 and 8.

키워드

참고문헌

  1. Ko, J. S., "Study on the Consequence Effect Analysis and Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank", J. of the Korea Society of Disaster Information, 9(4), 449-461, (2013)
  2. Choi, J. S. and Ro, K. J., "A Study on the Corrosion Tendency of Bottom Plates and Corrosion Prevention Measures in Hazmat Tanks", J. of the Korea Society of Disaster Information, 4(1), 39-152, (2008)
  3. Ministry of Government Legislation, http://www.moleg.go.kr/main.html
  4. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., MAY, (2000)
  5. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., p.7-3, (2000)
  6. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., p.7-4, (2000)
  7. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., p.7-6, (2000)
  8. Center for Chemical Process Safety(CCPS), Guidelines for Consequence Analysis of Chemical Release, The American Institute of Chemical Engineering(AIChE), p.85, (1999)
  9. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., p.7, (2000)
  10. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., p.7-8, (2000)
  11. Center for Chemical Process Safety(CCPS), Guidelines for Consequence Analysis of Chemical Release, The American Institute of Chemical Engineering(AIChE), p.76, (1999)
  12. American Petroleum Institute(API), Risk-Based Inspection Base Resource Document, API PUBLICATION 581, 1st ed., p.7-9, (2000)

피인용 문헌

  1. Recommended Evacuation Distance for Offsite Risk Assessment of Ammonia Release Scenarios vol.31, pp.3, 2016, https://doi.org/10.14346/JKOSOS.2016.31.3.156