DOI QR코드

DOI QR Code

Time-dependent analysis of reinforced concrete structures using the layered finite element method

  • Bradford, M.A. (School of Civil & Environmental Engineering, The University of New South Wales) ;
  • Gilbert, R.I. (School of Civil & Environmental Engineering, The University of New South Wales) ;
  • Sun, S.C.H. (SMEC)
  • Published : 1999.12.25

Abstract

The response of a reinforced concrete structure to loading is both immediate and time-dependent. Under a sustained load, the deflections caused by creep and shrinkage may be several times their instantaneous values. The paper describes a general finite element procedure, based on the so-called layered model, to analyse reinforced concrete members, and shows in particular how the simple Step by Step Method may be incorporated into this procedure. By invoking the Modified Newton Raphson Method as a solution procedure, the accuracy of the finite element method is verified against independent test results, and then applied to a variety of problems in order to demonstrate its efficacy. The method forms a general method for analysing highly indeterminate concrete structures in the time domain.

Keywords

References

  1. ACI Committee 209 (1971), "Prediction of creep, shrinkage and temperature effects in concrete structures", Designing for the Effects of Creep, Shrinkage, and Temperature in Concrete Structures, SP-27, ACI, 51-93.
  2. Aldstedt, E. and Bergan, P.G. (1978), "Nonlinear time-dependent concrete frame analysis", Journal of the Structural Division, ASCE, 104(ST7), 1077-1092.
  3. Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method" , ACI J., 69, 212-217.
  4. Bazant, Z.P. (1973), "Theory of creep and shrinkage in concrete structures: A precis of recent developments" , Mechanics Today, 2, Pergamon Press, Oxford.
  5. Bazant, Z.P. and Najjar, L.J. (1973), "Comparison of approximate linear models for concrete creep" , Journal of the Structural Division, ASCE, 99(ST9), 1851-1874.
  6. Bradford, M.A, Gilbert, R.I. and Sun, S.C-H. (1999), "Advanced strength analysis of R-C frames using a layered FEM" , submitted for publication.
  7. Branson, D.E., Meyers, B.L. and Kripanarayanan, K.M. (1969), "Time-dependent deformation of non-composite and composite sand-lightweight prestressed concrete structures", Iowa Highway Commission Research Report, No. 69-1, University of Iowa, Iowa City.
  8. Bresler, B. and Selna, L. (1964), "Analysis of time dependent behaviour of reinforced concrete structures", Symposium on Creep of Reinforced Concrete Structures, ACI J. SP-9, 55, 321-345.
  9. Dischinger, F. (1937), "Untersuchungen uber die Knicksicherheit, die elastische Verformung und das Kriechen des Betons bei Bogenbrucken", Der Bouingenieur, 181, No. 33/34, 487-520; No. 35/36, 539-552; No. 39/40, 595-621.
  10. Distefano, J.N. (1965), "Creep buckling of slender columns", Journal of the Structural Division, ASCE, 91(ST3), 127-150.
  11. England, G.L. and Illston, J.M. (1965), "Methods of computing stress in concrete from a history of measured strain", Civil Engineering and Public Works Review, 60, No. 705, 513-517; No. 706, 692-694; No. 707, 846-847.
  12. Faber, O. (1927), "Plastic yield, shrinkage and other problems of concrete and their effect on design" , Minutes of Proceedings of Institution of Civil Engineers, 225, Part I, London, 27-73.
  13. Furlong, R.W. and Ferguson, P.M. (1966), "Tests on frames with columns in single curvature", Symposium on Reinforced Concrete Columns, ACI SP-13, 55-73.
  14. Ghali, A., Neville, A.M. and Jha, P.C. (1967), "Effect of elastic creep recoveries of concrete on loss of prestress" , ACI J., 64, 8-2-810.
  15. Gilbert, R.I. (1988), Time Effects in Concrete Structures, Elsevier, Amsterdam.
  16. Glanville, W.H. (1930), "Studies in reinforced concrete III: The creep or flow of concrete under load" , Building Research Technical Paper No. 12, Department of Scientific and Technical Research, London.
  17. Goyal, B.B. and Jackson, N. (1971), "Slender concrete columns under sustained load", Journal of the Structural Division, ASCE, 97(ST11), 2729-2750.
  18. Kang, Y.J. (1977), "Nonlinear geometric, material and time-dependent analysis of reinforced and prestressed concrete frames" , Thesis presented to the University of Southern California at Berkley, Ca., in partial fulfilment of the requirements for the degree of Doctor of Philosophy.
  19. Krishna Mohan Rao, S.V., Prasada Rao, A.S. and Dilger, W.H. (1993), "Time-dependent analysis of cracked partially prestressed concrete members", Journal of Structural Engineering, ASCE, 119(12), 3571-3589. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3571)
  20. Maslov, G.N. (1940), "Thermal stress state in concrete masses with account to creep of concrete" , Izvestia Nauchno-Issledovatelskogl Instituta VNII, Gidrotekhniki, Gosenergoizdat, USSR, 28, 175- 188.
  21. McHenry, D. (1943), "A new aspect of creep in concrete and its application to design", Proceedings, ASTM, 43, 1069-1086.
  22. Meyers, B.L., Branson, O.E., Schumann, C.G. and Christiason, M.L. (1970), "The prediction of creep and shrinkage properties of concrete", Highway Commission Report No. HR-136, University of Iowa, Iowa City.
  23. Neville, A.M., Dilger, W.H. and Brooks, J.J. (1983), Creep of plain and Structural Concrete, Construction Press, London.
  24. Neilsen, L.F. (1970), "Kriechen und Relaxation des Betons" , Beton- und Stahlbetonbau, 65, 272-275.
  25. Rusch, H., Jungwirth, D. and Hilsdorf, H. (1973), "Kritische Sichtung der Einflusse von Kriechen und Schwinden des Betons auf das Verhalten der Tragwerke", Beton- und Stahlbetonbau, 68(3), 49-60, No.4, 76-86; No.5, 152-158.
  26. Schade, D. (1977), "Alterungsbeiwerte fur das Kriechen von Beton nach den Spannbeton-richtlinien" , Beton- und Stahl- betonbau, 72(5), 113-117. https://doi.org/10.1002/best.197700190
  27. Sun, S.C-H. (1996), "Nonlinear analysis and design of concrete framed structures", PhD Thesis, The University of New South Wales, Sydney, Australia.
  28. Trost, H. (1967), "Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxations-Probleme bei Beton und Spannbeton", Beton- und Stahlbetonbau, 62, No. 10, 230-238; No. 11, 261-269.
  29. Warner, R.F., Rangan, B.V. and Hall, A.S. (1989), Reinforced Concrete, 3rd edn, Longman Cheshire, Melbourne.
  30. Whitney, C.S. (1932), "Plastic theory of reinforced concrete design" , Transactions, ASCE, 107, 251-326.

Cited by

  1. Geometrically and materially nonlinear creep behaviour of reinforced concrete columns vol.5, 2016, https://doi.org/10.1016/j.istruc.2015.07.001
  2. Creep and creep fracture/damage finite element modelling of engineering materials and structures: an addendum vol.81, pp.5, 2004, https://doi.org/10.1016/j.ijpvp.2004.03.007
  3. Tendon Model for Nonlinear Analysis of Prestressed Concrete Structures vol.127, pp.4, 2001, https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(398)
  4. Shrinkage and creep response of slender reinforced concrete columns under moment gradient: theory and test results vol.57, pp.4, 2005, https://doi.org/10.1680/macr.2005.57.4.235
  5. Dry-reforming of methane over bimetallic Ni–M/La 2 O 3 (M = Co, Fe): The effect of the rate of La 2 O 2 CO 3 formation and phase stability on the catalytic activity and stability vol.343, 2016, https://doi.org/10.1016/j.jcat.2016.03.018