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Four Representative Applications of the Energy Shaping Method
for Controlled Lagrangian Systems
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Abstract — We provide a step-by-step, easy-to-follow procedure for the method of controlled
Lagrangian systems. We apply this procedure to solve the energy shaping problem for four benchmark
examples: the inertial wheel pendulum, an inverted pendulum on a cart, the system of ball and beam

and the Furuta pendulum.
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1. Introduction

The energy shaping method is a way to stabilize a
mechanical system by altering its energy function by
feedback so that the equilibrium point of interest becomes
a non-degenerate minimum of the altered energy function.
It has the advantage that it provides a constructive
procedure for generating stabilizing control laws and yields
large regions of convergence. This method is sometimes
called the method of controlled Lagrangians in the
Lagrangian approach and it has been actively developed [1-
9]. As a result, the criteria and the matching conditions for
energy shaping for nonlinear mechanical systems with one
degree of underactuation and linear mechanical systems
with an arbitrary degree of underactuation are now well
understood [7, 8]. However, fully worked-out examples
using these results are lacking. In this paper, we illustrate
how to apply the method of controlled Lagrangians with
four benchmark examples: the inertial wheel pendulum, an
inverted pendulum on a cart, the system of ball and beam
and the Furuta pendulum, through a step-by-step, easy-to-
follow procedure.

2. Preliminaries

We first review the basic scenario for the energy shaping
problem. Given a mechanical system, the configuration
space is denoted as Q with ¢ and ¢, the position and
velocity vectors respectively. We focus on controlled
Lagrangian systems, i.e. mechanical system whose law of
motion is governed by the Lagrangian of the form:
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L(q,q>=%m(q,q')—V<q>,

where m = m, is the positive-definite symmetric mass
. U B L
matrix while Em(q,q) and V(g) are the kinetic and

potential energy of the system, respectively. A controlled
Lagrangian system can be described by a triple (L,£,W),
where L is the Lagrangian, F is the external force, and W is
the control bundle along which the control force acts on the
system.

In what follows, we call n = dimQ the degree of freedom,
n, = dimW the degree of actuation and n, = n —n, the
degree of underactuation. We will use Greek alphabetical
indices and Roman alphabetical indices over different
ranges:

a,f,y,...=1,..,n;
a,b,c,..=n+1,...,n;

i, j,k,...=1,..,n,

unless stated otherwise. By adopting the Einstein
summation convention, the equations of motion in local
coordinates are given by

=F

o

Y%
my,q’ +[jk,alq’q" +—

OV
m,G’ +[jk.alq’q" gt = Fate
‘ q

| |

are the Christoffel symbols of the first kind of m. Here, we

Where

1

[ii.1] amz’f
ij,l]=— -
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i +6mﬂ _am,.j
q
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have assumed

W:Span{dq“|a:n]+l,~~-,n} (1

Two controlled Lagrangian systems (L,F,W) and
N N ST A
(LaFa W) 5 where L(q7 Q) = Em(qa q) - V(Q) and L(% Q) =

%na(q, c})—l}(q), are feedback equivalent if for any

control u €W | there exists 7 e W such that the closed
loop dynamics are the same, and conversely.

In this paper, we follow the setting as in [7]: Given a
controlled Lagrangian system (L,F =0,/) with no
external force, we try to find a feedback equivalent system
(i,ﬁ ,W) in which £ is a gyroscopic force dependent on
velocity of degree two, i.e. the k-th component I:“k of the
force F is given by

ﬁ;c = Cg/kqiqj 2

where CA’U.,( satisfy the following conditions:

i =Cus Cyp+Ch +C =0 (3)

In other words, this external force f does no work on
the feedback equivalent system.

It can be proved [7] that the existence of a feedback
equivalent system (]:,ﬁ ,Vf/) for a given -controlled
Lagrangian system (L,0,) is related to the existence of
solutions for a system of PDEs that are known as matching
conditions:

Theorem 1 [7]: (L,0,/) is feedback equivalent to
(L,F,W) with a gyroscopic force F of degree 2 if and
only if there exists a non-degenerate mass matrix m and a
potential function J such that the following equations are
satisfied:

A ) @)
oq*” oq’
Jopy t g0 t g =0, (5

where M, (resp. m”) is the (i,j)-entry of m (resp. m™),
T isan 7xnsymmetric matrix defined by

T =mm 'm (6)
and
7 1 - sk afﬂﬁ r r
J"-BY _ETlﬁm [aqk _erTar _FakT;}r s
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where I = m"[ jk,i] are the Christoffel symbols of the
second kind of m.

We introduce 7 since only T;k , but not fub, appear in
the matching PDEs; if we used m then all entries of m
would appear in the matching PDEs. Suppose that we have
obtained a feasible solution 7 (and hence i , since
m=mTm™" by (6)) and  for the matching conditions.
Then, we can obtain the Lagrangian 7 for the feedback
equivalent system. Also, the corresponding control bundle
W is given by

W =mm™'W.

Hence, what is left is to compute the gyroscopic force
F . Following [8], we introduce

Sk = myym P (my,m"[ls, 1] - [Is, k]), (7
> _ A plo~gs At
Aijk - m[pqumkrm m=m Clxl’ (8)
.

where [j5 ¢] are the Christoffel symbols of the first kind
of m . Once m is determined, we can compute S, .
Then, determine 4, in terms of S, using the following
scheme:

(a) "av'/a = ‘§i/'a’
(b) Aﬁva = _Saﬁv =S yap >
1~

(C) A/ab = Abya = _ESabv’

(d) Finally, choose any leub(. such that

A

=0. For simplicity, we can take

Notice that under this scheme zzl,.jk satisfy the properties
in (3). Once 4, are determined, we can obtain the
gyroscopic force terms C,, by (8), or equivalently,

A — 5 o o xr_  ys_ .zt P
C[jk =m,m, m,m" m”m A, )

* Procedure for solving energy shaping problems

We can now summarize the general procedure for
getting a nonlinear control force for a given controlled
Lagrangian system with degree of underactuation equal
ton, 21. (This procedure is from [9]):

S1. Check if the linearization of the given controlled
Lagrangian is controllable or its uncontrollable
subsystem is oscillatory. ' If neither holds, then

' Alinear system x = Ax is oscillatory if A is diagonalizable and all
eigenvalues of A are nonzero and purely imaginary.
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stop;otherwise, proceed to the next step. [7]

Get a solution for J and the (c.i) entries 7 of 7
which solve the matching PDEs (4) and (5), keeping in
mind that the 7, xn, matrix [7,;] is positive definite
around ¢ = 0 and 7 has a non-degenerate minimum
at ¢ = 0. In particular, 7, should be positive around g
= 0 when the degree of underactuation 7, is one.
Choose the rest of the entries 7, of 7 so that 7 is
positive definite, at least at q = 0. In particular, when
the degree of freedom n is two, one should choose

> (1,7 /T,,.

Obtaln the mass matrix m of the feedback equivalent
system, through the equation: 2 =m T'm .

Compute the gyroscopic force F in (2) by computing
S, » Ay and then C, by (7), (9) and steps (a) — (d)

ijk >

between (8) and (9).

S2.

S3.

S4.

Ss.

S6. Compute the control bundle ¥ , which is given by
’,’/lai’,";lil
W:Span a=n+1,---,n
mairh.

S7. Choose a dissipative, W -valued linear symmetric
control force 7. 2 In particular, for systems with
degree of underactuation equal to 7, , one may choose

i =-K"DKq, (10)
where D is any (n—-n)x(n—n) symmetric positive
definite matrix and K is the (n—mn)xn matrix defined by

A

mil”.

A

m

m+l1i n+li

m m

K =
S8. Compute the corresponding control force u:

av
dgqe

= [jk,ald’d" +

v av
—??i.m\?'ﬁ”([jk,;] id+

a0 — Core’d" —u) (11)

where a=n +1,---,n . Note that u, for a=1L--,n is
zero by (1).

Notice that in the above procedure, we require f to be
gyroscoplc and u d1ss1pat1ve This implies that for every
g, <F,g>=0 and <#,§><0 . Hence the time
derivative of the total energy E of the feedback

equivalent system satisfies

? The linear symmetric force means a force F of the form F(gq,q)

=S(q)q where S(g) is a symmetric matrix-valued function of g.

1581

i) =0+(i,4) < 0.

As a result, Lyapunov stability of the equilibrium
(¢.9) = (0,0) is guaranteed.

The crucial part of solving an energy shaping problem is
to obtain a solution for the matching PDEs. For degree of
underactuation equal to one, the matching conditions in
Theorem 1 reduce to two PDEs, one for v and the other
for T:

a_V_ a ’/_aV —() 12
aql il aqj > ( )
A oT
T,,m’ [ 1 T J—O. (13)
oq"

It turns out that for this class of mechanical systems, the
conditions for energy shaping are related to the
linearization of the given system, summarized as follows:

Theorem 2 ([7]). Given (L,0,/V) with one degree of
underactuation, let (Z',0,#") be its linearized system at
equilibrium (q q) (0,0) . Then there exists a feedback
equivalent (L F W) with £ gyroscopic of degree 2 and
¥ having a non-degenerate minimum at (0, 0) if and only
if the uncontrollable dynamics, if any, of (L,0,#') is
oscillatory. In addition if (LI,O,W’) is controllable, then
(i,ﬁ ,Vf/) can be exponentially stabilized by any linear
symmetric dissipative feedback onto Jj .

Notice that for systems with higher degrees of
underactuation, “energy-shapability” of the linearization is
only necessary, but not sufficient for that of the original
nonlinear system. Hence, the existence of solution for the
matching PDEs requires further study.

3. Example 1: Inertial Wheel Pendulum

We follow the setting in [10], as shown in Fig. 1. The
configuration space is

0=5"x8"={(q".9")14q".q° e (-m, 7]} .

The moments of inertia of the rod and the wheel are I,
and I, respectively, and the distance of the center of mass
of the rod from the unactuated joint (not shown in the
figure) is ¢,,. The control force u is the torque applied to
the inertial wheel. Let 4 =m (>, +m, 0} +1,+,and I, = I,,
then 4 > I and the Lagrangian is given by

1 . .
E(A(q‘)2 +214'q> +1(4°)*)—myg cosq',
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m27]2

Fig. 1. The inertial wheel pendulum

where m, =m{_, +m,{, and g is the gravitational constant.

The equilibrium (g,4)=(0,0) is wunstable. The
linearization of this system at (g,q) =(0,0)is controllable.
Hence by Theorem 2 we can apply energy shaping to
stabilize the equilibrium. The corresponding matching
PDEs are

N . AT, o7,
(711_712)#4'[_7111"'712}5121:0» (14)
s~ OV (. AL, |V .
(T, _le)ﬁql -{—TH + I]ZJ&]Z +my(A—1I)sing' =0.
(15)
We first solve (14). If we choose 7, =1 and T}, = b,

where b, € R, then (14) is satisfied. Substituting this pair
of T entries into (15), one can solve for J which reads

)

for any smooth function f. Now, for simplicity, we choose
a particular set of parameters, say, b, = 2 and f(x) = x’
so that the potential energy becomes

(4b, —I)q]
(by =11

_my(4-TI)cosq'
by -1

I}:

2

A 1
V =-m,(A-1I)cosq' +I—2((2A—I)q1 +Iq2)

Since 4 > I, the critical points of 7 are ¢ = 0 and
A-1

(ql,qz)z(ar,—2 n) . Notice that ¢ = 0 is the only

minimum point for 7 . The total energy function has a
nondegenerate minimum at (¢,q) = (0,0) provided that the
T matrix (and hence m ) is positive definite. Note that
T,, is still free for which we just choose 8. The resulting

positive definite T isthen given by

1582

A

1)

from which we can calculate m :

2 2
247 —A1+I—§AI—1—
. 42 4
"= I’ 5
Su-L 3p
2 4 4

A

Since m is a constant matrix, S, =0and 1:1,.].,( =0.As
aresult, all C,, terms are zeros.

We now choose the following dissipative control force
for the feedback equivalent system, according to (10) with
D .

1

The corresponding control law u, obtained by (11), reads
as follows:

u:4(2A—I

-2

. 2q°

3 .
7 +5m0 sing j
By Theorem 2, local exponential stability is guaranteed
around the equilibrium (g,¢) =(0,0). To find the region
of attraction, however, one needs to apply the LaSalle
invariance principle. First, notice that with # defined as
in (10), the time derivative of the total energy function is

given by
2
j <0,

We now choose an » > 0 so that the set

dE

Co (24-1 .,
E—(u,q>=—[7ql+q2

0, ~{@d<0lE@a=r|

is and does not include (¢'.¢°.¢".¢%)=

(n)

since dE/dt is non-positive. We then need to consider all
(¢,9) such that gE/dr is zero, i.e.

compact
B 24-1

7,0,0). Note that €, is positively invariant

Let S be the set of points at which dE/d: =0 1in Q,,
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viz

S={(@.9)eQ|q* =~ @a-D11}.

Define M to be the largest invariant subset of S. Let
(q(2),4(?)) be a trajectory in M. In what follows, the
argument t is suppressed for the sake of brevity. Then the
trajectory should also satisfy

9 =—q¢'QA-1)/1+C, (16)

for some fixed C. Substituting (16) into the equations of
motion for the feedback equivalent system (L,F,W), we
have the following systems of differential equations:

TA(A- DG +I(I — Aym,sing' —=C(2A-1)=0,
I(A-1)g' +2C =0.

Eliminating ¢' in the above equations, we can
immediately see that ¢' must be a constant, say C,,then

by (16) 2_—ﬂcl+c. Substituting (¢', ¢*) =
24-1
(Cla_

show that C=0 and C, =0 or © both of which imply

L[_In,O,O)eQ

C,+C) into the equations of motion, we can

ql = qz =0. Since (n’— we conclude

the largest invariant subset M of S is {(0, 0, 0, 0)} only.
Hence, by LaSalle invariance principle, asymptotic
stability is achieved in €, . Furthermore, since €, is
compact, we have exponential stability in €2, by Lemma
1 in the Appendix.

4. Example 2: Inverted Pendulum on a Cart

In this system in Fig. 2, we assume the rod has
negligible mass in order to simplify our model. The
configuration space is

Q={(ql,q2)|q] e(-n/2,n/2),q° e‘R}.

which considers the pendulum only above the horizontal
line. The Lagrangian is given by

. 1 . 1 .
L(g.q) =S mt(§)" + = (m +my)(§)’
+mlq'q’ cosq' —m gl cosq'

where & is the gravitational constant. The potential
energy V(q)=mglcosq' does not attain a minimum at ¢
= 0, and hence the equilibrium point (¢,q)=(0,0) is
unstable. The linearization of this system at (0, 0) is

1583

I |
q 2

Fig. 2. An inverted pendulum on a running cart

controllable. Hence, by Theorem 2 we can use the energy
shaping method to stabilize this system around the
equilibrium.
The matching conditions are
[67:” . 2mT,, cosq'sing' —2T ,m (sing'

T, +

11

_my+m,

1
COS ~
d 11,
m{

14

|

|

oq' —(m, +m,)+m, cos’ q'
'ao .o,
+ cosq T, -T, _121:0’
L 0q
m +m, » cosq » OV
(_ lezzTn / leJF
m, q
] N
cosqg ~ 4~ |OV
+ Tll_ 12 |72
12 oq

+m,glsinq' (—(m, +m,)+m, cos’ g') =0.

We now try to obtain closed-form solutions for 7 and
y . First, we may start with the following possible choice:

T, = A, + 4 cos’ q',
where A4, and 4 #0 are constants to be determined.

Putting this ansatz into the first matching condition, we can
obtain

P A,m, + A (m, +m,)

. oy, cosq', (17)
Or
7, - (m, +m,)(4, + A11 cos’ ¢') '
m,{cosq
Notice that the second solution for 7., will lead to a

12
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potential energy function P whose Hessian is not
positive definite at ¢ = 0. Hence, we should resort to the
first solution of flz as in (17) and solve the matching
condition for J to obtain

~ 1 Al
V=—mgl cosq' +f{q2 +—‘sinql}
4 4

where /= f{x) is any smooth function. Since we require J
to have a nondegenerate minimum at ¢ = 0, we may set
f(x)=x" so that

2
~ 1 Al .
V=—mgl’cosq' +[q2 +—1s1nqu )
4, 4,

To have positive definiteness of 7 at least around ¢ =0,

~

we may impose 4 >0>4, so that 7, >0 at least
around ¢ = 0 and take any 7,, such that det7 >0. In
particular, if we take 4 =2and A4,=-¢, where € is
fixed and € € (0,2), then

~cos’q' (2(m, +my)—em,)’ +1
2 mil*(2cos’ q' —¢)

B

which makes det7 =1/(m?¢*)>0 for all g. In short, we
have the following 7 matrix and potential energy J :

2(m, +m,)—em, 1

2 1
2cos”q —¢ cosq

7 ml
| 2(m, +my)—em, cos L cos? ¢ (2(m, +m,)—em)* +1 |’

mil*(2cos’ ¢' —g)
jZ
Define a subset R,of O as follows:

—cos™ \/E, cos™ \/E xR,
2 2

Then 7 is positive definite over R, . Furthermore, (0, 0,
0, 0) is the only critical point of } within the region %, .
The resulting mass matrix is 7 = [, ] where

m{

gq” +20sing'

S 1
V =——mgl cosq' +[
€ £

iRE

2 p4
R ml
W =——5——l4cos’ ¢'(m, +m,)’ +4m cos’ ¢'
2cos"q —¢
—8cos’ ¢' (m! +mm,)+1],
 mllcosq' s
my, = ————/[—4ecos” q (m; +mm,)+1
2cos"q —¢
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+2e(m, +m,)* +2em; cos’ ¢'],
- [e’m] cos® ¢' +&*(m, +m,)

+cos’ ¢' (1-2e"m —2&’mm,)].

Following the procedure, we can compute the
gyroscopic force F =[F,F,]" for the shaped system:

292 1 s 1
m; £~ cosq sing

F=r——"""""~ @Expr ,q),
T Qeosiq —op 1P (4,9
. mil’cosq'sing'  Er(a.)

=——q Expr(q,9),
2 (20032 ql—g)z q ‘prg.q

where

Expr(q,q) = (204" +£4*){2e(m; cos’ ¢' — (m, + mz)z)

+2&7m, (m, sin” q' +m,)—1}.

I}

We now choose a control force u as in (10):

[

One can then compute u by (11). Note that by Theorem
2, local exponential stability is guaranteed around
(¢,9) =(0,0). To compute the region of attraction, one
applies the LaSalle invariance principle. As in the case of
inertial wheel pendulum, we start by choosing r > 0 so that
the set

The control bundle J7 is equal to

W = Span {{2—8 cosq'1
€

20
{— cosq'1
g

. —cosq1
u=—| g

1

Q, ={(@.9) <% xW|E(g.9) <]

is compact. Then we define the set

d_EZO}
dt

204" cosq' +e¢° = 0}.

S= {(q,q') €Q,

= {(q,é) €Q,

We note that the total energy function £ has a zero

o o 20 )
time derivative if and only if ¢° =—(—cosq')¢' from
€

which we have
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q' =

20 .
—"sing' +C,
€

(18)

where C is a constant. Let M be the largest invariant subset
of § and consider an arbitrary trajectory (¢(¢),4(¢))in M.
This trajectory should satisfy the equations of motion of
the feedback equivalent system together with (18).
Substituting (18) into those equations of motion, we have

2
2C(2cos’ q1—8)+m1§£ sin2q' (19)
sing'(¢")? = ,
q(q) ey
.. 4Ccosq'+m gl*sin
ql q E;g q (20)

Multiplying (20) by cosq' and subtracting it from (19),
one can obtain

2Ce

1:-1
—C0sq ¢q =53
m; ¢

sing'(¢')’

Then by integration twice with respect to ¢z, we have
: 1

sing

Ce
:Tﬁt2 +C1t+C2’

1

where C,,C, are constant. Now, since sing' is always
bounded, the above equation holds only if C=C =0,
implying that ¢' must be a constant. As C =0 and ¢' =0
(20) implies sing' =0, i.e. ¢'=0 or ®©. When ¢' =0,
so is ¢ . In other words, M ={(0,0,0,0)}. Hence, by
LaSalle invariance principle, every trajectory in Q, will
approach (0, 0, 0, 0) asymptotically. Note that when
e—>0", R, >(n/2,n/2)xR . As a result, we can
enlarge the region of attraction by letting ¢ — 0. Since
Q. is chosen to be compact, we also have exponential

stability over €, by Lemma 1 in the Appendix.

>

5. Example 3: Ball and Beam

Consider the ball and beam system as shown in Fig. 3.
Given that the length of the beam is /¢, the configuration
space is [—{,¢]x[-n/2,m/2] after nondimensionalization
of the time and torque [11]. The Lagrangian of this system
is given by:

L(q.q) = %{(cf)z F(C 4 (@Y )NG)) - g sing,

where g is the gravitational constant. The linearization at
the equilibrium point (0, 0) is controllable, so we can apply
the energy shaping method. The two matching conditions

1585

Fig. 3. The ball and beam system

are
.ol ~[of, 24'T
(¢ +@))T, a— le(aqlzl —WJ= :
o . oV .
(¢ +@))T, o leaTZ_g(éz +(¢'))sing” =0.

We may try an ansatz for le first and then solve for
T] .(¢") . We thus have the following
general solutions [11] for the kinetic matching PDE:

T

1, , assuming Tll

2 1 o A
= 4 (€ + ('), T, = ﬁ( +(@").

For simplicity, we now take 4, =2 implying

=J2(0* +(¢')) and T, =0>+(¢q")*. The resulting
potential energy, by solving the second matching condition,

takes the form

V=g(l-cosq?)+ f(q ).

21, a2 (g
2

¢

Again, we take f(x)=x to ensure that J has a

minimum at ¢ = 0. The positive definiteness requirement
A . . A 3 .

for 7 is met by taking T, = +(q"))?- Notice that the

resulting 7 is positive definite everywhere. Furthermore,

compared to the method in [11], we have freedom over the

choice of 7,,. Now, the corresponding mass matrix is

1
S — -1
m:ﬁl (e |
- 20 (@

With all these at hand, we can calculate the gyroscopic
terms. By definition, we have

S, =0,
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L 3W2-4
S, =———\0
" oW2-) *aYq

forall i# j. The ,:17.],,{ terms can be computed as follows:

>

Ay, =4y, =0,

. 32 -4

Ay =- \/5_1 \/€2+(‘11)2q1
. W24

Ay =— \/5_1 {€2+(q1)2}ql’

34
Ay =4y, =4y =
2(2-1) re

T 3\/_ 4 2 1N\2 1
n=An=- 4(\/— 1){ +(q)}q -

We thus obtain the gyroscopic force terms as follows:

v _ 2+2)g
(g

_2+V2)¢'

121 211 _W’

>
>

& ¢, - BN2-9¢
= N s
- \2-4’¢’

C221 - :
20 +(¢") N2 -1’

Combining these gyroscopic force terms together, we
can now obtain the expression for the gyroscopic force £ :

F, =-Gyro(¢.9)-4" . F, = Gyro(¢.4)-4'

Where
NI 12 W2 -4 J
Gym:( ) [ e +(3v2-4)q |

22 -0 +(g')

Now, for the control force, we first compute the control
bundle 7 :

= span

[ \/2{€2+(q }l

Then, we choose the dissipative control force # by
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1 1
. 20 +(g") 2402 + (¢ {q-l}
u=-
1 il
1

2 @)

from which one can compute the corresponding control
law u. Local exponential stability is guaranteed by
Theorem 2 and one can find a compact region of attraction
by applying LaSalle invariance principle. By Lemma 1 in
the Appendix, it becomes a region of exponential
convergence as well.

6. Example 4: Furuta Pendulum

We now come to study the energy shaping problem for
the Furuta pendulum. The configuration space of the
Furuta pendulum is Q= (-m,n]x(-m,n]. Following the
notation in [12] (with some minor changes), the
Lagrangian for the Furuta pendulum is given by

1. .
L(q,9) = EOL(q‘)2 +B4¢'q* cosq'

1 . .
+5(y+as1n2 q')¢*)* —Dcosq',

where a.=ml*,B=mlR,y=(M +m)R*,D =mgl and the
parameters are defined in Fig. 4. In [12], the Furuta
pendulum is shaped by observing that it can be transformed
via feedback to a system equivalent to an inverted
pendulum on a cart with some gyroscopic force terms.
Here,we will solve the energy shaping problem, using the
standardized method of solving matching PDEs. Since the
linearization of the system at (¢,¢) = (0,0)is a controllable
system, the energy shaping method applies by Theorem 2.
For the sake of simplicity in later computations, we can
divide the equations of motion by the parameter @ so as
to obtain the following mass matrix and potential energy:

Fig. 4. The Furuta pendulum
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1 Acosq'

m= V(g)=Ccosq',
{Acosq1B+sin2ql} @ 1

for some 4,B,C > 0. The resulting matching PDEs are

ﬁz)J

2cosq sing' (- T”Acosq +T]2)
~(B+1)+(4* +1)cos’ ¢'

(TAH(B+sin2 q")- AT, cosql)

oT,

aql

2A sing (T”A cosq'
—(B+1)+(4’ +1)cos

(—YIIAcosq +T ) @b

o7,
oq’

(&

. . A v
(TH(B +sin’ ¢')— AT, cosq' )—1
oq

J-o

+( TAcosq +T )s:

—sing' {~(B+1)+(4”> +1)cos’¢'} =0. (22)

We first solve (21). Notice that solutions of the form

T,=A4+4,cos’q" and T, =B cosq cannot give a

potential energy 7 in (22) with a minimum at ¢ = 0. We
guess that a possible candidate can be the following

_ X, - X, cos’ ¢'
" Z-Z,cos’q"’ 23)
X, cosq'

A

12—

Z,~Z,c08*q""

Substitute this pair into (21), and we have the following
relation on the coefficients:

CAB+DX, +(A4 + D)X,
- AL +1)

AX,Z,
AB+DX, +(4*+1) X,

) (24)

(25)

) =

With X, and Z, defined in (24) and (25), the T,
entries become

s AB+DX, + (A +D)X,
! A(A* +1)Z,
AB+1)+ (A4 + 1)% — A(A* +1)cos’ ¢'

2

AB+1)+(4° +1)%—Acos2 q'

2

A

{AB+1)X, + (4> +1)X,}cosq'
AB+1)X, +(A> +1)X, — 4X, cos’ ¢'

_X
VA

12

and then one can solve for the potential energy:

CZ,A(A* +1)cos q'

VA:
AB+D)X, +(4> +1)X,

AX,sing'
JAX (L +1)X, + 4BX,}
JAX, (A +1)X, + 4BX, }

A X, tan™

+f

where f = f(x) is any smooth function which attains its
minimum value at ¢ = 0. We can take f(x)=x’for the
sake of simplicity. Recall that 7 should be positive
definite around q =0, and  has a minimum at q = 0.

A +1)X, - A4 -B)X
(£ +DX AL =B)Y, 6
ABX, +(A" + DX,
by evaluating the expression of f}l at (0, 0). The
requirement on 7 implies the following constraints:
Z]
3 <0, 27)
AB+DX, +(4 +1) X,
Z,(A* +1)((A> +1) X, + ABX, )

AB+D)X, +(A> +1)X,

Notice that (28) is always true due to (27) and the fact

: AB  A(A*-B) . .
that 4, C > 0. Since — < , inequality (26
A +1 A* +1 quality (26)
implies that
4B X, A4-B)
A +1 X, A7 +1

As a result, the expression A(B+1)+7(A2 +1) that
2
appears in T11 has the following bounds:

X
A< A(B+1)+?3(A2 +1) < A(A* +1),

2

implying that the denominator of 7]
Hence, using (27), T,

T;, is never zero.
, > 0if and only if

A(B+1)+X3 (A* +1)— A(4> +1)cos’ ¢' <0
2
» i Bt 1 X,
& cos" g >—
AL+l AX,

Furthermore, since X,/X, >-AB/(4”>+1), cos’q' is
always bounded below by 1/(4° +1). This implies that to
enlarge the region of attraction as much as possible, one
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may choose X, and X, so that X;/X, is close to
—AB/(A® +1). For instance, one may choose X, = A° +1
and X, =-74AB where r < 1 is close to 1. Then by (27)
Z, must be negative as the denominator in (27) is positive.
After setting 7', one can solve the energy shaping problem
as in the previous examples, which is left to the readers.

7. Conclusions and Future Work

In this paper we introduced a standardized procedure for
shaping a controlled Lagrangian system, and illustrated this
procedure using four examples. Recently we discovered
some criteria for shaping a mechanical system with two
degrees of underactuation and with more than three degrees
of freedom [9], so a similar energy shaping procedure can
be proposed in this case. Nevertheless, energy shaping for
higher degrees of underactuation still remains largely
unsolved. We plan to investigate this issue in the future.
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Appendix

Lemma 1. Consider a differential equation on R"
x=f(x), f(0)=0.

Suppose that the origin is exponentially stable. If a
compact set is a region of asymptotic convergence, then it
is a region of exponential convergence.

Proof. By the assumption of exponential stability, there
are ¥>0,M;>0 and A >0 such that

|x(t, X, )| <Me™ |x0 |

for each #>0 and each initial point x, € B, , where
B ={x| |X| <r} . By the assumption on Q and continuity
of x(s), for each yeQ\B, there is an open
neighborhood U, of V and time 7, >0 such that
x(T,;x,) € B, for all x, €U, N(Q\B,). Hence, for each
x, €U, N(Q\B,)

|x(t, X, )| = |x(t =T,;x(T;x, ))|
<M (T xy)|

—A(t-T,
<Mge Ty

AT, )
<My e ’|x0|
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for all t=0, since ré|x0|. Since {B,,U,|yeQ\B.} is
an open cover of the compact set Q , there is a finite
subcover {B,.U, ,--,U, }of Q .

Let M =M, max{e"" |i=1,---,k} Itis then easy to see
that

|x(t,x0 )| <Mje™ |x0|

for each 20, and each initial point X, € €, which proves
that Q is a region of exponential convergence.
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