• Title/Summary/Keyword: Step length

Search Result 1,050, Processing Time 0.03 seconds

Feedrate Optimization Using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

A Study on Definitions of Security Requirements for Identification and Authentication on the Step of Analysis (분석단계 보안에서 식별 및 인증의 보안 요건 정의에 대한 연구)

  • Shin, Seong-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.87-93
    • /
    • 2014
  • TIn analysis as the first step of S/W development, security requirements of identification and authentication, ID and password management, authentication process, authentication method, ete. should be defined. Identification is to uniquely identify certain users and applications running on a certain system. Authentication means the function to determine true or false users and applications in some cases. This paper is to suggest the security requirements for identification and authentication in analysis step. Firstly, individual ID should be uniquely identified. The second element is to apply the length limitations, combination and periodic changes of passwords. The third should require the more reinforced authentication methods besides ID and passwords and satisfy the defined security elements on authentication process. In this paper, the security requirements for the step of identification and authentication have been explained through several practical implementation methods.

Synthetic Turbulence Effect in Subsonic Backward Facing Step Flow Using LES (LES을 이용한 후향 계단 유동에서의 Synthetic turbulence 효과 연구)

  • Ahn, Sang-Hoon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • The synthetic turbulence generation model for inlet boundary conditions of subsonic Backward Facing Step (BFS) was investigated. The average u-velocity and Reynolds stress at inlet boundary follows experimental data. Synthetic Eddy Method (SEM), random noise, and uniform flow conditions were implemented relative to the synthetic turbulence generation method. A three dimensional Large Eddy Simulation (LES) was applied for turbulent flow simulation. Turbulent and mean flow characteristics such as flow reattachment length, velocity profiles, and Reynolds stress profiles of BFS were compared with respect to the turbulent effects.

Design of an SIR BPF by a Novel EM Tuning of Individual Resonators (개별 공진기의 EM 조정을 통한 SIR로 구성된 대역 여파기의 설계)

  • Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.748-756
    • /
    • 2007
  • In SIR filter, fringing capacitances and discontinuities yield a distorted frequency response from those expected by design formulas, especially in higher frequencies. In this paper, a procedure is presented in order to compensate for fringing capacitances and step impedance discontinuities by EM simulation for a 5th order SIR filter. This method propose the procedure of tuning the coupling and the length of individual resonator by EM simulation. For the filter composed by the tuned resonators, no further tuning is required. The procedure is experimentally justified by comparing the measured data of the fabricated filter with the simulation results.

A study on the Mechanical characteristics of austempered ductile cast iron to hardness and texture variation in drilling (오스템퍼링한 구상흑연주철(ADI)의 드릴 가공시 경도 및 현미경조직변화에 관한 연구)

  • 조규재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-88
    • /
    • 1999
  • This paper was carried out to know the influence of advanced austempered ductile cast iron (ADI) on the tool life and mechanical properties of drilling machinability. For manufactured method of ADI, the spheroidal graphite cast iron were austenized at 90$0^{\circ}C$ for 1 hour and then austempered for 2 hour at 37$0^{\circ}C$ in the salt bath. And interrelationship has been investigated between tool life and mechanical characteristics of specimen material on drilling condition when the ordinary and step-feed drilling are carried out to drill holes of specimens. Tensile strength and hardness of ADI decrease and elongation of ADI increases with the increase austempered temperature. It is known that about 2 times of tool life in the case of step-feed decreases compared with ordinary feed due to the high hardness of ADI and hardness ascribed to the fact that retained austenite became to martensite state due to cutting heat in drilling. Under the constant feed rate 0.1mm/rev relation between hardness and length of end tip after drilling can be formularized to Hv=$788.46L^{-0.096}$ for the cutting speed 6.1m/min.

  • PDF

Basic ]Requirements for Spectrum Analysis of Electroencephalographic Effects of Central Acting Drugs (중추성 작용 약물의 뇌파 효과의 정량화를 위한 스펙트럼 분석에 필요한 기본적 조건의 검토)

  • 임선희;권지숙;김기민;박상진;정성훈;이만기
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • We intended to show some basic requirements for spectrum analysis of electroencephalogram (EEG) by visualizing the differences of the results according to different values of some parameters for analysis. Spectrum analysis is the most popular technique applied for the quantitative analysis of the electroen- cephalographic signals. Each step from signal acquisition through spectrum analysis to presentation of parameters was examined with providing some different values of parameters. The steps are:(1) signal acquisition; (2) spectrum analysis; (3) parameter extractions; and (4) presentation of results. In the step of signal acquisition, filtering and amplification of signal should be considered and sampling rate for analog-to-digital conversion is two-time faster than highest frequency component of signal. For the spectrum analysis, the length of signal or epoch size transformed to a function on frequency domain by courier transform is important. Win dowing method applied for the pre-processing before the analysis should be considered for reducing leakage problem. In the step of parameter extraction, data reduction has to be considered so that statistical comparison can be used in appropriate number of parameters. Generally, the log of power of all bands is derived from the spectrum. For good visualization and quantitative evaluation of time course of the parameters are presented in chronospectrogram.

  • PDF

Multi-channel Speech Enhancement Using Blind Source Separation and Cross-channel Wiener Filtering

  • Jang, Gil-Jin;Choi, Chang-Kyu;Lee, Yong-Beom;Kim, Jeong-Su;Kim, Sang-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.56-67
    • /
    • 2004
  • Despite abundant research outcomes of blind source separation (BSS) in many types of simulated environments, their performances are still not satisfactory to be applied to the real environments. The major obstacle may seem the finite filter length of the assumed mixing model and the nonlinear sensor noises. This paper presents a two-step speech enhancement method with multiple microphone inputs. The first step performs a frequency-domain BSS algorithm to produce multiple outputs without any prior knowledge of the mixed source signals. The second step further removes the remaining cross-channel interference by a spectral cancellation approach using a probabilistic source absence/presence detection technique. The desired primary source is detected every frame of the signal, and the secondary source is estimated in the power spectral domain using the other BSS output as a reference interfering source. Then the estimated secondary source is subtracted to reduce the cross-channel interference. Our experimental results show good separation enhancement performances on the real recordings of speech and music signals compared to the conventional BSS methods.

Design of Structure Corners restraining Tribological Failures: Part II - Analysis of Design Parameters and Examples (트라이볼로지 손상을 억제하기 위한 구조물 모서리부 설계: 제2부 - 설계인자 분석 및 예)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.170-176
    • /
    • 2015
  • As a continuation of Part I, which developed a design formula of the minimum corner radius (Rmin) for restraining tribological failures, Part II investigates design parameters such as material properties and contact force. As design examples, Al 7075-T651, SST 304 and HT-9 are chosen for the materials and 1, 10 and 100 kN are used for the forces. The results show that the difference in Rmin decreases as either the elastic modulus increases or the contact force decreases. Given the same material and force, the permissible Rmin decreases as the flat region increases and vice versa. Because the Rmin values obtained from the examples are very small, the dimensions of the corner radius normally designed in engineering structures are regarded acceptable. The von Mises stress evaluated for a typical example, which is far below the yield strength, confirms this interpretation. Nevertheless, the present work can provide a design criterion as well as a guideline for quality control in the manufacturing of, in particular, contact corners, which has not been attempted before to the best of the author’s knowledge. In addition, this paper considers the problem of a step that may be formed in the contact contour by using a similar approach. The result shows that no size of the step is permissible.

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers

  • Murakami, Yu;Noshi, Katsuya;Fujita, Kohei;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2013
  • Oil, hysteretic and inertial mass dampers are representatives of passive dampers used for smart enhancement of seismic performance of building structures. Since oil dampers have a nonlinear relief mechanism and hysteretic dampers possess nonlinear restoring-force characteristics, several difficulties arise in the evaluation of buildings including such dampers. The purpose of this paper is to propose a practical method for simultaneous optimal use of such dampers. The optimum design problem is formulated so as to minimize the maximum interstory drift under design earthquakes in terms of a set of damper quantities subject to an equality constraint on the total cost of dampers. The proposed method to solve the optimum design problem is a successive procedure which consists of two steps. The first step is a sensitivity analysis by using nonlinear time-history response analyses, and the second step is a modification of the set of damper quantities based upon the sensitivity analysis. Numerical examples are conducted to demonstrate the effectiveness and validity of the proposed design method.