• Title/Summary/Keyword: Step frequency

Search Result 1,430, Processing Time 0.029 seconds

A Study on the Frequency Control on the Induction Heating System Using Two Step Resonant Inverter (공진형 인버터를 이용한 2단 유도가열 시스템의 주파수제어에 관한 연구)

  • Yoo, Jae-Hoon;Shin, Dae-Cheul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current (HFAC) in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. In this paper are discussed action analysis and characteristics analysis of 1.5[kW]-Class half-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how two step heating superheated steam generator is developed and application of system are also discussed.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

SIMULATION OF A MICROPUMP WITH STEP ELECTRODES (계단 모양 전극을 가진 미세펌프 해석)

  • Kim, Byoung-Jae;Lee, Seung-Hyun;Sung, Hyung-Jin
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.40-45
    • /
    • 2010
  • The flow rate is higher in ACEO micro-pumps with step electrodes than in micro-pumps with planar asymmetric electrodes. In the present study, numerical simulations were made of a ACEO micro-pump with step electrodes to investigate the effects of electrode design parameters on the pumping flow rate. The electrical charge at the electrodes, the fluid flow, and potential were solved, taking into account the finite size of ions, that is, the steric effect. This effect is recognized to be capable of quantifying the electrical charge more accurately in the electrical double layer subject to high voltages. Geometrical parameters such as heights, widths, and gaps of three-dimensional electrodes were optimized to enhance the pumping flow rate. Moreover, the effect of amplitude and frequency of AC was studied.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

The Checklist Based on Stored items of Cooking for Kitchen Furniture Design (부엌가구디자인 효율화를 위한 식생활물품 체크리스트)

  • Kim, Sun-Joong;Kwon, Myung-Hee
    • Journal of the Korean housing association
    • /
    • v.21 no.3
    • /
    • pp.53-65
    • /
    • 2010
  • The purpose of this study is to develop a checklist based on the stored items of cooking, for making a good kitchen furniture reseach. The research candidates are purposive sampled from 30 households of for 40 or 50 pyeong-type apartments in Kangnam, Seoul, The research data are is collected gotten at by a field study of the stored items of cooking, eating and utility area, by an in-depth interview to 30 households, and by a field survey of the department stores, super-markets of home appliances. Studied households in average hold about 890 items, which are classified as 239 sorts. The first step of making the checklist is to categorize items into 9 biggest categories, considering the usage of items and the stage of the preparing the food. when the item was used. Second step of making the checklist is to categorize the items into 31 smaller categories, which reflect the shape of items, the storage style and the place of storage. Third step of making the checklist is to sort the items into smallest categories by the frequency of the usage, storage type, and the additional capacity of the item. Even Although items are sorted into the same level of categories, the frequency of use make a different storage area. Also, the storage style of the items was different according to the storage area. Based on these factors, we suggested a checklist based on the stored items of cooking.

Basic ]Requirements for Spectrum Analysis of Electroencephalographic Effects of Central Acting Drugs (중추성 작용 약물의 뇌파 효과의 정량화를 위한 스펙트럼 분석에 필요한 기본적 조건의 검토)

  • 임선희;권지숙;김기민;박상진;정성훈;이만기
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • We intended to show some basic requirements for spectrum analysis of electroencephalogram (EEG) by visualizing the differences of the results according to different values of some parameters for analysis. Spectrum analysis is the most popular technique applied for the quantitative analysis of the electroen- cephalographic signals. Each step from signal acquisition through spectrum analysis to presentation of parameters was examined with providing some different values of parameters. The steps are:(1) signal acquisition; (2) spectrum analysis; (3) parameter extractions; and (4) presentation of results. In the step of signal acquisition, filtering and amplification of signal should be considered and sampling rate for analog-to-digital conversion is two-time faster than highest frequency component of signal. For the spectrum analysis, the length of signal or epoch size transformed to a function on frequency domain by courier transform is important. Win dowing method applied for the pre-processing before the analysis should be considered for reducing leakage problem. In the step of parameter extraction, data reduction has to be considered so that statistical comparison can be used in appropriate number of parameters. Generally, the log of power of all bands is derived from the spectrum. For good visualization and quantitative evaluation of time course of the parameters are presented in chronospectrogram.

  • PDF

Extracting Input Features and Fuzzy Rules for Classifying Epilepsy Based on NEWFM (간질 분류를 위한 NEWFM 기반의 특징입력 및 퍼지규칙 추출)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • This paper presents an approach to classify normal and epilepsy from electroencephalogram(EEG) using a neural network with weighted fuzzy membership functions(NEWFM). To extract input features used in NEWFM, wavelet transform is used in the first step. In the second step, the frequency distribution of signal and the amount of changes in frequency distribution are used for extracting twenty-four numbers of input features from coefficients and approximations produced by wavelet transform in the previous step. NEWFM classifies normal and epilepsy using twenty four numbers of input features, and then the accuracy rate is 98%.

  • PDF

Aurally Relevant Analysis by Synthesis - VIPER a New Approach to Sound Design -

  • Daniel, Peter;Pischedda, Patrice
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1009-1009
    • /
    • 2003
  • VIPER a new tool for the VIsual PERception of sound quality and for sound design will be presented. Requirement for the visualization of sound quality is a signal analysis modeling the information processing of the ear. The first step of the signal processing implemented in VIPER, calculates an auditory spectrogram by a filter bank adapted to the time- and frequency resolution of the human ear. The second step removes redundant information by extracting time- and frequency contours from the auditory spectrogram in analogy to contours of the visual system. In a third step contours and/or auditory spectrogram can be resynthesised confirming that only aurally relevant information were extracted. The visualization of the contours in VIPER allows intuitively to grasp the important components of a signal. Contributions of parts of a signal to the overall quality can be easily auralized by editing and resynthesising the contours or the underlying auditory spectrogram. Resynthesis of time contours alone allows e.g. to auralize impulsive components separately from the tonal components. Further processing of the contours determines tonal parts in form of tracks. Audible differences between two versions of a sound can be visually inspected in VIPER through the help of auditory distance spectrograms. Applications are shown for the sound design of several interior noises of cars.

  • PDF

A Study on Low Phase Noise Frequency Synthesizer Design for Satellite Terminal (위성통신 단말용 저 위상잡음 주파수 합성기 설계에 관한 연구)

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Hong, Sung-Yong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • In this paper, we present the high resolution and low phase noise frequency synthesizer for satellite terminal. To improve the phase noise of frequency synthesizer, we analyze how the configuration of frequency synthesizer affect the phase noise. The implemented frequency synthesizer reduce the phase noise and show the high resolution. The output power of this frequency synthesizer is over -2dBm in 950~1450MHz and the phase noise of the -101dBc/Hz at 10kHz frequency offset.

New Adaptive Linear Combination Structure for Tracking/Estimating Phasor and Frequency of Power System

  • Wattanasakpubal, Choowong;Bunyagul, Teratum
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • This paper presents new Adaptive Linear Combination Structure (ADALINE) for tracking/estimating voltage-current phasor and frequency of power system. To estimate the phasors and frequency from sampled data, the algorithm assumes that orthogonal coefficients and speed of angular frequency of power system are unknown parameters. With adequate sampled data, the estimation problem can be considered as a linear weighted least squares (LMS) problem. In addition to determining the phasors (orthogonal coefficients), the procedure estimates the power system frequency. The main algorithm is verified through a computer simulation and data from field. The proposed algorithm is tested with transient and dynamic behaviors during power swing, a step change of frequency upon islanding of small generators and disconnection of load. The algorithm shows a very high accuracy, robustness, fast response time and adaptive performance over a wide range of frequency, from 10 to 2000 Hz.