• Title/Summary/Keyword: Step disturbance

Search Result 155, Processing Time 0.027 seconds

Improved DMC for the integrating process (적분 공정 제어를 위한 향상된 DMC)

  • 강병삼;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1120-1123
    • /
    • 1996
  • DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.

  • PDF

Experimental Design of Disturbance Compensation Control to Improve Stabilization Performance of Target Aiming System (표적지향 시스템의 안정화 성능 향상을 위한 실험적 외란 보상 제어기 설계)

  • Lim Jae-Keun;Kang Min-Sig;Lyou Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.897-905
    • /
    • 2006
  • This study considers an experimental design of disturbance compensation control to improve stabilization performance of main battle tanks. An adaptive non-parametric design technique based on the Filtered-x Least Mean Square(FXLMS) algorithm is applied in the consideration of model uncertainties. The optimal compensator is designed by two-step design procedures: determination of frequency response function of the disturbance compensator which can cancel the disturbance of series of single harmonics by using the FXLMS algorithm and determination of the compensator polynomial which can fit the frequency response function obtained in the first step optimally by using a curve fitting technique. The disturbance compensator is applied to a simple experimental gun-torsion bar-motor system which simulates gun driving servo-system. Along with experimental results, the feasibility of the proposed technique is illustrated. Experimental results demonstrate that the proposed control reduces the standard deviation of stabilization error to 47.6% that by feedback control alone. The directional properties of the FXLMS Algorithm such as the direction of convergence and its convergence speed are also verified experimentally.

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

New Smith Predictor Controller Design Using a Disturbance Observer (외란 관측기를 이용한 새로운 스미스 예측제어기 설계)

  • Lee, Soon-Young;Yang, Dae-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1730-1734
    • /
    • 2005
  • In this paper, a new Smith predictor controller for a disturbance adding to input side of a time delay plant is proposed. A disturbance observer is obtained to estimate an input disturbance and the new Smith predictor controller to eliminate the effects of a disturbance is designed using the disturbance observer. As a result, the proposed Smith predictor controller can make a steady state error for step input disturbance zero quickly. The effectiveness and the improved performance of the proposed system are verified by computer simulation.

Integral Sliding Mode Controller for Magnetically Suspended Balance Beam: Theory and Experimental Evaluation (자기력 부상 시스템인 평형빔의 Integral Sliding Mode 제어기 : 이론과 실험적 평가)

  • Lee, Jun-Ho;Lee, Jeong-Seok;Park, Yeong-Su;Lee, Jae-Hun;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.526-537
    • /
    • 2000
  • This paper deals with a sliding mode controller with integral compensation in a magnetic suspension system The control scheme comprises an integral controller which is designed for achieving zero steady-steate error under step disturbance input and a sliding mode controller which is designed for enhancing robustness under plant parametric variations. A procedure is developed for determining the coefficients of the switching plane and integral control gain such that the overall closed-loop system has stable eigenvalues. A proper continuous design signal is introduced to overcome the chattering problem. The performance of a magnetically suspended balance beam using the proposed integral sliding mode controller is illustrated. Simulation and experimental results also show that the proposed method is effective under the external step disturbance and input channel parametric variations.

  • PDF

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화)

  • Kwon O-Sang;Kim Chul-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

A Design of Disturbance Observer to Improve of Disturbance Response for Time Delay Systems (시간지연시스템의 외란응답 특성 개선을 위한 외란 관측기 설계에 관한 연구)

  • Lee, Soon-Young
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.424-427
    • /
    • 2017
  • Smith predictor can't be applied to the time delay systems that have poles near the origin or a pure integrator or a modeling error, because of occurring the steady state error for the step disturbance. In this paper, a new Smith predictor controller for these systems is designed to eliminate the effects of the disturbance. A disturbance observer to estimate a disturbance is proposed and a new controller is designed using the estimated disturbance. As a result, the new controller can eliminate the effects of the disturbance and modeling error. The simulation results for the steam superheater and the steam pressure systems verify the efficiency of the proposed controller.

A study on gap treatment in EMS type Maglev (상전도 흡입식 자기부상열차에서 공극처리방식에 대한연구)

  • Sung, Ho-Kyung;Jho, Jeong-Min;Lee, Jong-Moo;Kim, Dong-Sung
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.189-197
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

Air-Gap Signal Treatment based Fuzzy Rule in Rail-Joint (Rail-Joint에서 퍼지룰을 기반으로하는 공극신호처리법)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Bae, D.K.;Kim, B.S.;Shin, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1071-1072
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power trajectory in Complex plane (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 탁소전력의 궤적변화)

  • Kwon, O.S.;Kim, C.H.;Park, N.O.;Chai, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.310-312
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load the oscillation can be severe and even increase largely and finally the out-of-step condition may occur During the power swing and out-of-step conditions, the a apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

  • PDF