• Title/Summary/Keyword: Step Response Model

Search Result 369, Processing Time 0.026 seconds

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

Single Step Response Based Method for the Simple Identification of Wiener-type Nonlinear Process (단일 계단 응답에 근거한 Wiener형 비선형 공정의 간편한 모델 확인 방법)

  • Sanghun Lim;Jea Pil Heo;Su Whan Sung;Jietae Lee;Friedrich Y. Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • The Wiener-type nonlinear model where a static nonlinear block follows a dynamic linear block is widely used to describe the dynamics of chemical processes. A long process excitation step is typically needed to identify this Wiener-type nonlinear model with two blocks. In order to cope with this disadvantage, an identification method for the Wiener-type nonlinear model that uses only a single-step response is proposed here. The proposed method estimates the response of the dynamic linear sub-block from the initial part of the step response, and then the static nonlinear sub-block is identified. Because the only single-step response is used to identify the Wiener-type nonlinear model, there is great benefit in time and cost for obtaining process response. The performance of the proposed identification method with the single-step response is verified through a representative Wiener-type nonlinear process, a pH titration process, and a liquid level system.

A Study on Dynamic Matrix Control to Boiler Steam Temperature (관류보일러 스팀 온도의 동역학 행렬 제어에 관한 연구)

  • Kim, Woo-Hun;Moon, Un-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.323-325
    • /
    • 2009
  • In this paper, we present simulation results of Dynamic Matrix Control(DMC) to a boiler steam temperature. In order to control of steam temperature, we choose the input-output variables and generate the step response model by each input variable's step test. After that, the control structure executes on-line control with optimization using step response model. Proposed controller is applied to the APESS(Doosan company's boiler model simulator) and it is observed that the simulation results show satisfactory performance of proposed control.

  • PDF

A Study on Interpolated Step Response Model of Dynamic Matrix Control(DMC) for a Boiler-Turbine System of Fossil Power Plant (계단 응답 모델의 보간을 이용한 화력발전 보일러-터빈 시스템의 동역학 행렬제어(DMC)에 관한 연구)

  • Moon, Un-Chul;Oh, Seok-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.109-115
    • /
    • 2008
  • This paper proposes an adaptive Dynamic Matrix Control (DMC) and its application to boiler-turbine system In a conventional DMC, object system is described as a Step Response Model (SRM). However, a nonlinear system is not effectively described as a single SRM. In this paper, nine SRMs at various operating points are prepared. On-line interpolation is performed at every sampling step to find the suitable SRM. Therefore, the proposed adaptive DMC can consider the nonlinearity of boiler-turbine system. The simulation results show satisfactory results with a wide range operation of the boiler-turbine system.

Modeling Approaches for Dynamic Robust Design Experiment

  • Bae, Suk-Joo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.373-376
    • /
    • 2006
  • In general, there are three kinds of methods in analyzing dynamic robust design experiment: loss model approach, response function approach, and response model approach. In this talk, we review the three modeling approaches in terms of several criteria in comparison. This talk also generalizes the response model approach based on a generalized linear model. We develop a generalized two-step optimization procedure to substantially reduce the process variance by dampening the effect of both explicit and hidden noise variables. The proposed method provides more reliable results through iterative modeling of the residuals from the fitted response model. The method is compared with three existing approaches in practical examples.

  • PDF

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

A Study of Web Hacking Response Procedures Model based on Diagnosis Studies for Cross-Site Scripting (XSS)Process (Cross-Site Scripting(XSS) 프로세스 진단을 기반으로 한 웹 해킹 대응절차 모델 연구)

  • Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • When applying web hacking techniques and methods it needs to configure the integrated step-by-step and run an information security. Web hackings rely upon only one way to respond to any security holes that can cause a lot. In this study the diagnostic process of cross-site scripting attacks and web hacking response procedures are designed. Response system is a framework for configuring and running a step-by-step information security. Step response model of the structure of the system design phase, measures, operational step, the steps in the method used. It is designed to secure efficiency of design phase of the system development life cycle, and combines the way in secure coding. In the use user's step, the security implementation tasks to organize the details. The methodology to be applied to the practice field if necessary, a comprehensive approach in the field can be used as a model methodology.

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.