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ABSTRACT

In general, there are three kinds of methods in
analyzing dynamic robust design experiment: loss
model approach, response function approach, and
response model approach. In this talk, we review the
three modeling approaches in terms of several criteria
in comparison. This talk also generalizes the response
model approach based on a generalized linear model.
We develop a generalized two-step optimization
procedure to substantially reduce the process variance
by dampening the effect of both explicit and hidden
noise variables. The proposed method provides more
reliable results through iterative modeling of the
residuals from the fitted response model. The method
is compared with three existing approaches in
practical examples.

Keywords: Generalized linear models (GLMs),
Response model (RM) approach, Taguchi method,
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1. INTRODUCTION

The robust design introduced by Taguchi (1987) is
a strategic method for improving the performance of
the system in the development stage. The main
objective of robust design is to reduce the
performance variation in products and processes by
selecting the setting of easy-to-control factors robust
to hard-tocontrol factors (noises). The robust design
method has been applied to problems with the static
system and the dynamic system. The static system is
defined as that for which the desired output of the
system has a fixed target value and the dynamic
systemn is that where the target value depends on the
input signal controlled by a system operator.

For the dynamic system, an ideal quality is based
on an ideal relationship between the signal and the
response. a quality loss is caused by the deviation
from this ideal relationship. Significant quality
improvement can be achieved through using designed
experiments to search for an “optimal” design which
minimizes the deviation from this function. The
derived optimal solutions, however, might be
different according to modeling approaches in the
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dynamic system.

Tsui (1998, 1999, 2000) illustrated those facts
thoroughly by comparing the optimization
procedure derived from three different approaches:
the response model (RM), loss model (LM), and
response function model (RFM) approach. He also
showed that the RM approach allows greater
flexibility to investigate factor effects for dynamic
robust design experiment. Up to this point, most
response models have been solved under the
assumption that the residual error is normally
distributed with constant variance in the dynamic
system. Ordinary least squares (OLS) estimates are
obtained from such an assumption and successfully
applied in most applications. However, when the
variance is a function of the mean as in the
exponential family (i.e., binomial, poisson, and
gamma distribution, efc.), the inference procedure
based on OLS is inaccurate. Introducing a
Generalized Linear Model (GLM), the assumption
of normality and constant variance for the residual
errors is no longer required. In this article, we
introduce a GLM to the dynamic robust design
experiment for the purpose of reducing the
variation caused by the noise variables which are
not included explicitly in the experiment.

2. RESEARCH MOTIVATION

Lin and Wen (1994) applied the dynamic robust
experimental design to obtain the uniform zinc
phosphate coating. Eight control factors and a
signal factor (geometric area of low-carbon steel
plate) were adopted to examine the uniformity for a
phosphating process. The . response was the
difference in the weight of the phosphate coating
before and after stripping. The noise factor was a
plated film location where the difference in coating
uniformity was present. It cannot be controlled nor
observed during a process, therefore, (explicit)
noise factors were not given in this experiment. A
standard OA18 orthogonal array was used as an
experimental design. The objective of this
experiment is to determine the best control factor
settings that give the uniform plating film thickness,
regardless of the unobservable noise variable



(plated film location). The ideal relationship between
response and signal is assumed to be linear. Figure 1
shows strong linear relationship between signal and
response, along with the trend in which response
variation is proportional to the signal value.

In the LM approach, the response was first fitted to
the signal only for each run of fixed control
combinations. Because intercept was turned out to be
insignificant, a linear model without intercept was
fitted to the data. The effects for the slope and error
variance were estimated using ordinary least squares
(OLS) at each run. All control factors except one (4)

have three levels. We decomposed seven factors’ (B -

H) effects into orthogonal linear (/) and quadratic (q)
contrast {-1,0,/} and {1,2,/}, respectively. The
significant control effects on the slope () and log
variance (logo.) were identified based on a half-
normal probability plots and Lenth’s (1989) method.
At the 5 % significance level the fitted models were

8 = 06844 0.224D; — 012G, — 01028,
~.0588, — 0.082E, — (LO0H,,
log o = 2152 - 0.826E)

Because explicit noise factors are not given in this
experiment, control by noise interactions cannot be
estimable. Consequently, the optimization procedure
of the LM approach is identical to that of the RFM
approach.

With the RM approach, all terms at the 5%
significant level were included in the following OLS
model:

g == (0684 4 00498 - 0.075C + 0.2240

FODESE, — 01226 — D.102H, — 00588,
HIOL4D, — 0062, — DOBLF, + 00860,
—0LO60H M. RY

with R> = 0.993. We should first minimize the process

variance on the basis of the fitted model (1). However,

because noise factors are not included explicitly in
this experiment variance effects cannot be identified
using the traditional RM approach.

3. GENERALIZED LINEAR MODEL (GLM) -
RESPONSE MODEL (RM) APPROACH

3.1. Generalized
Procedure

Suppose that the true response model is linear in
some functions of p control factors (C), g explicit
noise factors (V) and signal factor M of K levels, and
also linear in » known functions of the signal factor
iM),... fo(M)). All these factors and functions

Two-Step  Optimization

interact with each other. When there are 7 control runs,

J noise runs, and L replications in each one of the
signal levels, the response model for i = 1,....1, j =

I,...J, k=1,...,K,and [=1,....L, is

Vit = SolCe) + wolC, N 71+ [31{C5)
et i, N Al + -+ [F{Cy)
+em f;f:?t, ﬁr}'ﬂfyx.(ﬂffkj 4 Eep8 {2}
where B(C,)=(8,(C,),..., 8,(C,)) represents the
functional relationship between the response and /-
th control factors’ combination C, .
e(Ci:Nj) :(eo(ci’Nj)r“sen(Can))
denotes the relationship between the response and j-
th noise factors’ combination N, only or control-
by-noise interactions. It follows that e(C,N) are
iid N(0,62(C)) , where
o 2(C) = Var [e(C,N)]- The errors (g,.jk,'s) are
iid N0, 02 (C,f(M))) , where
o2 (CE(M)) =Var[e(C,f(M))]. We assume
that e and ¢ are fndependent. o>(C) represents
the variation caused by the explicit noise factor N
and o?(C,f(M)) is the variation caused by a
hidden noise variable. The conditional mean and
variance of the response Y given C, M are,
respectively
E(Y) = p(CAMY=a(Cy (M), (#
Var(¥) = Varle(d, VN'}’ FilAN)] 4+ Varie)
= FUMY a3 (@A) + od(C M)A
where £, (M) =(, f,(M),..., f,(M)) . As
Var(Y) depends on the signal factor M, we integrate
over M to determine optimal settings of the control
factors. Then the variance of the response Y is

Mg
R j; [F LMY o2 £ (M HaZ(C, MM,
) (5)

where M;, My denote the low and high limit of
the signal, respectively. Suppose the control factors
can be divided into three disjointed groups, i.e.,
C=(C,,C,,C,),and o;(C) isa function of
C, and C;. Under the constraint that the mean
function must be adjusted to #(M), we minimize the
average loss R(C,,C,,C;). That s,

Min R(C
Min, K€€ C)
subject to
/U(ClaC2>C3aM)=t(M)
for any M.

A generalized two-step optimization procedure is
introduced to minimize ‘the loss function
R(C,,C,,C,;). The procedure is as follows:

Step 1. (a) Find €3 thet minimize af{Ca]
(b Find € that minimize a8, 00%).

Btep 2. Find OF so that @l O], OF, CL MY o 1A for
any AL,

-374-



3.2. Modeling with Generalized Linear Models
(GLMs)

The additional variation caused by a hidden noise
variable can be reduced by solving the dynamic
system after modeling the errors (&, ) via control,
explicit noise, and signal factors simultaneously. An
error from the response model (2) is

St = Yagrt — 9(C, Ny, FLAMRLY),

where vy is an unknown true response function. The
distribution of squared error is gijz.kl ~ O';k ,1’12_1..
Since Eut is not an observed residual, the error is
approximated by the residual (el.jkl ) derived from the
fitted response model. The squared residual model

can be represented as

aledua) = w0, Ny M)y,

where  x(C,,N,;,M,) represents a predictor
vector consisting of the control, explicit noise, and
signal factors, y is a coefficient vector, and g denotes
a link function for the response e;.k, . Note that the
element of first column in x is 1. We assume that
higher orders of signal functions are negligible, thus
only the linear term is included in the residual
modeling. Based on the fact that squared residuals are
approximately gamma distributed and the variance
must remain positive, we consider a gamma-

multiplicative model with

-E’_?’,M = pxplalCy, Ny, MY ~). (8]

The maximum likelihood estimate (MLE), § is
derived from the log-gamma link function for the
mean of the squared residuals. The actual
implementation of maximum likelihood results in an
algorithm based on iteratively reweighted least
squares (IRLS) (see McCullagh and Nelder (1989)).
Thus, MLE ¥ is obtained by minimizing

— e — sl g 12
T lagkf ad P .
IR DD N RE I

where  uia{y) = ‘E[e‘%ml{é,j\’ﬂl{ He  wnd
Bl )] = VarlgulC.N M.

After approximating 6'5.,( with the squared
residuals using a gamma-multiplicative model, the
weighted least squares (WLS) method is used to
improve the response model. We can optimize the
dynamic system based on the effect estimates
resulting from this iterative procedure. Hereafter, our
procedure for optimizing the dynamic system will be
called the GLM-RM approach.
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4. EXAMPLES REVISITED

Zinc phosphate coating data were re-analyzed
following to the iterative procedure in Section 4.
First, the residuals from the fitted response model
(1) were calculated, then the squared residuals were
regressed on the control, signal, and control-signal
interactions using a gamma-log link function. The
final response and GLM variance model with the
5% significant level were, respectively

§ om (LLGTE -+ D044 By 4+ 0.073C + D.208D,
A0O60E) — 0.118C; — 0.113H) — 0.0578,
~D.0B0E, — 0.032F; 4 00976, — 0.048H )M,

= exp[l.464 4 09188, - (LO13E, + 0.010M
HO.008E M), o

= b
i

At last, we applied the generalized two-step
optimization procedure to the response and variance
model estimated from the GLM-RM approach. First,
the variance function (7) should be integrated over
M

Aor
G = f exp|1.464 + 0.0188; ~ 0M3E,
M

HOO19M 4 DOOBE M |4 M
(‘44,?0@@[0.08?&_) — 1 46axcp]~0.81 35y )

, OG-+ 00055, J
x exp|1.464 + LUIBE.

The optimization results from the GLM-RM
approach are quite different from the LM approach.
Factor £ was fitted at level 1 in the LM approach,
while £ = 0 was selected to minimize the process
variance in the GLM-RM approach.

5. CONCLUDING REMARKS

For the dynamic robust design problem, the RM
approach allows greater flexibility to study factor
effects and results in experimental cost savings.
This article illustrates how we extend the response
mode] approach more general cases: there are no
explicit noise factors and there are no significant
control-by-noise interactions. It was also noted that
GLM modeling of the residuals from the response
model reveals the potential for reducing the
variance caused by hidden noise variables in the
RM approach. In conclusion, we suggested the
GLM-RM  approach and generalized two-step
optimization procedure as the tool for providing
more reliable results.
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