• 제목/요약/키워드: Step Heating

검색결과 238건 처리시간 0.022초

Atomic Layer Deposition (ALD) of ZrO2 in Ultrahigh Vacuum (UHV)

  • Roy, Probir Chandra;Jeong, Hyun Suck;Doh, Won Hui;Kim, Chang Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1221-1224
    • /
    • 2013
  • The atomic layer deposition (ALD) of $ZrO_2$ was conducted in ultrahigh vacuum (UHV) conditions. The surface was exposed to $ZrCl_4$ and $H_2O$ in sequence and the surface species produced after each step were identified in situ with X-ray photoelectron spectroscopy (XPS). $ZrCl_4$ is molecularly adsorbed at 140 K on the $SiO_2$/Si(111) surface covered with OH groups. When the surface is heated to 300 K, $ZrCl_4$ loses two Cl atoms to produce $ZrCl_2$ species. Remaining Cl atoms of $ZrCl_2$ species can be completely removed by exposing the surface to $H_2O$ at 300 K followed by heating to 600 K. The layer-by-layer deposition of $ZrO_2$ was successfully accomplished by repeated cycles of $ZrCl_4$ dosing and $H_2O$ treatment.

Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun;Lim, Hyun-Soon;Jeon, Byung-Kuk;Ko, Jung-Min;Lee, Jun-Young;Ki, Whan-Gun
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.31-35
    • /
    • 2008
  • Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.

비등온 박판 성형공정의 유한요소해석 (A Finite Element Analysis of Non-Isothermal Sheet Metal Forming Process)

  • 김용환
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1119-1128
    • /
    • 1990
  • 본 연구에서는 박판의 프레스 성형에 관련된 열소성 문제를 해석할 수 있는 효과적이고, 신뢰도가 높은 수치적 방법을 개발하는 것이다. 박판 성형에서 변형과 열전달이 결합된 문제의 해석을 위하여 3차원 유한 요소 해석을 행하고 그를 이용하여 박판의 스트레치 성형 공정을 해석하였다. 해석 결과를 기존의 실험 결과와 비교하 여 본 해석의 타당성을 보이고, 재료 거동에 영향을 미치는 여러가지 공정 변수의 영 향을 검토하였다.

Efficient Cleavage of Alkyl Aryl Ethers Using an Ionic Liquid under Microwave Irradiation

  • Park, Se Kyung;Battsengel, Oyunsaikhan;Chae, Junghyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.174-178
    • /
    • 2013
  • A highly reliable dealkylation protocol of alkyl aryl ethers, whose alkyl groups are longer than methyl group, has been developed. We report that various ethyl, n-propyl, and benzyl aryl ethers are successfully cleaved using an ionic liquid, 1-n-butyl-3-methylimidazolium bromide, [bmim][Br], under microwave irradiation. Despite many characteristics such as lower cost and less toxicity of the alkylating agents, and greater hydrophobicity of the products, longer alkyl ethers have been significantly less exploited than methyl ethers, probably due to more difficulty in the deprotection step. Since it has the same advantages as the demethylation method developed by this group including mild conditions, short reaction time, and small use of the ionic liquids, the dealkylation protocol can greatly encourage the broader use of longer alkyl groups in the protection of phenolic groups. As with our previous study of demethylation using [bmim][Br], the microwave irradiation is crucial for the deprotection of longer alkyl aryl ethers. Unlike the conventional heating, which causes either low conversion or decomposition, the microwave irradiation seems to more effectively provide energy to cleave the ether bonds and therefore suppresses the undesired reactions.

Analysis of Economics through Control Method of Heat Source Equipment in Seasonal Air conditioning Building

  • Park, Yool;Kim, Samuel;Jung, Soon-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.209-217
    • /
    • 2003
  • The term “energy saving is economical” is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing a system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning systems. For this reason, this research can provide the economic operating number control method as basic design data. The data obtained through analysis of life cycle cost based on amount of yearly energy use, are produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating$.$cooling systems based on seasonal air conditioning system, which is widely used for medium and large size office buildings in Busan.

Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성 (The Characteristic of Crystalline Si Solar Cell by Heat Shocking)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

Thermal Decomposition Kinetics of Copolymers Derived from p-dioxanone, L-lactide and Poly(ethylene glycol)

  • Bhattarai Narayan;Khil Myung Seob;Oh Seung Jin;Kim Hak Yong;Kim Kwan Woo
    • Fibers and Polymers
    • /
    • 제5권4호
    • /
    • pp.289-296
    • /
    • 2004
  • The kinetic parameters, including the activation energy E, the reaction order n, and the pre-exponential factor Z, of the degradation of the copolymers based on the poly(L-lactide) (PLLA) or poly(p-dioxanone-co-L-lactide) (PDO/PLLA) and diol-terminated poly(ethylene glycol) (PEG) segments have been evaluated by the single heating methods of Friedman and Freeman-Carroll. The experimental results showed that copolymers exhibited two degradation steps under nitrogen that can be ascribed to PLLA or PDO/PLLA and PEG segments, respectively. However, copolymers exhibited almost single degradation step in air. Although the values of initial decomposition temperature were scattered, copolymers showed the lower maximum weight loss rate and degradation-activation energy in air than in nitrogen whereas the higher value of temperature at the maximum rate of weight loss was observed in air.

Preceramic Polymer를 이용한 마이크로셀룰라 코디어라이트 세라믹스의 합성 (Synthesis of Microcellular Cordierite Ceramics Derived from a Preceramic Polymer)

  • 송인혁;김영미;김해두;김영욱
    • 한국세라믹학회지
    • /
    • 제44권5호
    • /
    • pp.184-189
    • /
    • 2007
  • In this study, a novel-processing route for producing microcellular cordierite ceramics has been developed. The proposed strategy for making the microcellular cordierite ceramics involves three steps: (i) fabricating ceramic-filled preceramic foams by heating a mixture of polysiloxane, expandable microspheres, talc, and alumina in a mold, (ii) cross-linking the foamed body, and (iii) transforming the body into microcellular cordierite ceramics by sintering. Cu jig was used for near net shaping in the foaming step. The experimental variables such as the shape of foaming jig and the content of expendable microsphere were investigated. By controlling the content of expendable microsphere, it was possible to make the porous cordierite ceramics with cell density of ${\sim}1.0{\times}10^9\;cells/cm^3$.

Theoretical Analyses of Autothermal Reforming Methanol for Use in Fuel Cell

  • Wang Hak-Min;Choi Kap-Seung;Kang Il-Hwan;Kim Hyung-Man;Erickson Paul A.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.864-873
    • /
    • 2006
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

플립칩 Sn-3.5Ag 솔더범프의 Electromigration과 Thermomigration 특성 (Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump)

  • 이장희;임기태;양승택;서민석;정관호;변광유;박영배
    • 대한금속재료학회지
    • /
    • 제46권5호
    • /
    • pp.310-314
    • /
    • 2008
  • Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.