Browse > Article

Thermal Decomposition Kinetics of Copolymers Derived from p-dioxanone, L-lactide and Poly(ethylene glycol)  

Bhattarai Narayan (Department of Advanced Organic Materials Engineering, Chonbuk National University)
Khil Myung Seob (Department of Textile Engineering, Chonbuk National University)
Oh Seung Jin (Department of Textile Engineering, Chonbuk National University)
Kim Hak Yong (Department of Textile Engineering, Chonbuk National University)
Kim Kwan Woo (Department of Bionano System Engineering, Chonbuk National University)
Publication Information
Fibers and Polymers / v.5, no.4, 2004 , pp. 289-296 More about this Journal
Abstract
The kinetic parameters, including the activation energy E, the reaction order n, and the pre-exponential factor Z, of the degradation of the copolymers based on the poly(L-lactide) (PLLA) or poly(p-dioxanone-co-L-lactide) (PDO/PLLA) and diol-terminated poly(ethylene glycol) (PEG) segments have been evaluated by the single heating methods of Friedman and Freeman-Carroll. The experimental results showed that copolymers exhibited two degradation steps under nitrogen that can be ascribed to PLLA or PDO/PLLA and PEG segments, respectively. However, copolymers exhibited almost single degradation step in air. Although the values of initial decomposition temperature were scattered, copolymers showed the lower maximum weight loss rate and degradation-activation energy in air than in nitrogen whereas the higher value of temperature at the maximum rate of weight loss was observed in air.
Keywords
Biodegradable; Poly(p-dioxanone-co-L-lactide)-b-poly(ethyleneglycol); Thermogravimetric analysis; Activation energy; Friedman method; Freeman-Carroll method;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 N. Saito, T. Okada, H. Horiuchi, N. Marakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki, and K. Takaoka, Nature Biotechnology, 19, 332 (2001)   DOI   ScienceOn
2 C. M. Agrawal, D. Huang, J. P. Schmitz, and K. A. Athanasiou, Tissue Eng., 3, 345 (1997)   DOI
3 W. L. Chang, J. Appl. Polym. Sci., 53, 1759 (1994)   DOI   ScienceOn
4 J. H. Flynn and L. A. Wall, J. Polym. Sci. B, 4, 323 (1966)   DOI
5 P. K. Chaterjee and C. M. Conrad, J. Polym. Sci. A-l, 6, 594 (1968)
6 A. W. Coats and J. P. Redfern, Nature, 201, 68 (1964)   DOI   PUBMED   ScienceOn
7 F. D. Kopinke, M. Remmler, M. Moder, and O. Wachsen, Polym. Degd. Stab., 53, 329 (1996)   DOI   ScienceOn
8 M. S. Eroglu, B. Hazer, O. Guven, and B. M. Baysal, J. Appl. Polym. Sci., 60, 2141 (1996)   DOI   ScienceOn
9 L. Abate, S. Calanna, A. Pollicino, and A. Recca, Polym. Eng. Sci., 36, 1782 (1996)   DOI   ScienceOn
10 E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958)   DOI
11 L. Reich, J. Polym. Sci. Polym. Lett. Ed., 2, 621 (1964)   DOI
12 D. M. Cam and M. Marucci, Polymer, 38, 1879 (1997)   DOI   ScienceOn
13 X. G. Li, M. R. Huang, G. H. Guan, and T. Sun, Polym. Int., 46, 289 (1999)   DOI   ScienceOn
14 N. Bhattarai, H. Y. Kim, D. R. Kim, and S. J. Park, J. Polym. Int., 52, 6 (2003)   DOI   ScienceOn
15 H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963)   DOI
16 M. S. Widmer, P. K. Gupta, L. C. Lu, R. K. Meszlenyi, G. R. Evans, K. Brandt, T. Savelt, A. Gurlek, C. W. Patrick, and A. G. Mikos, Biomaterials, 19, 1945 (1998)   DOI   ScienceOn
17 N. Bhattarai, H. Y. Kim, and D. R. Lee, Polym. Degrad. Stab., 78, 423 (2002)   DOI   ScienceOn
18 I. C. McNeil and H. A. Leiper, Polym. Degrad. Stab., 11, 267 (1985)   DOI   ScienceOn
19 H. E. Kissinger, Anal. Chem., 29, 1702 (1957)   DOI
20 S. Han, C. Kim, and D. Kwon, Polymer, 38, 317(1997)   DOI   ScienceOn
21 J. Scheirs, S. W. Bigger, and O. Delatycki, Eur. Polym. J., 27, 1111 (1997)   DOI   ScienceOn
22 D. W. Van Krevelen, C. Van Heerden, and F. J. Huntjens, Fuel, 30, 11 (1951)
23 M. Ranchandani, M. Pankaskie, and D. Robinson, J. Controlled Release, 43, 161 (1997)   DOI   ScienceOn
24 E. S. Lipinsky, R. G. Sindair, and J. D. Browning, US Patent, 5,767,222 (1993)
25 T. C. Forschner, PCT Int Wo, 9721753 Al (1997)
26 S. Gogolewski and P. Mainil-Vailet, Biomaterials, 18, 251 (1997)   DOI   ScienceOn
27 A. K. Mukerjee and M. J. Patri, J. Macromol. Sci. Chem., A26, 213 (1989)
28 H. Nishida, M. Yamashira, N. Hattori, T. Endo, and Y. Tokiwa, Polym. Degrad. Stab., 70, 485 (2000)   DOI   ScienceOn
29 X. G. Li, M. R. Huang, G. H. Guan, and T. S. Angew, Macromol. Chem., 227, 69 (1995)   DOI   ScienceOn
30 E. Bortel, S. Hodorowiez, and R. Lamot, Macromol. Chem., 180, 2491 (1979)   DOI
31 T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965)   DOI
32 H. L. Friedman, J. Polym. Sci. C., 6, 183 (1964)