• 제목/요약/키워드: Stem rot

검색결과 224건 처리시간 0.028초

Occurrence of Root Rot caused by Fusarium fujikuroi on Adzuki Bean in Korea

  • Min Sun Ha;Hyunjoo Ryu;Sung Kee Hong;Ho Jong Ju;Hyo-Won Choi
    • 한국균학회지
    • /
    • 제50권4호
    • /
    • pp.319-329
    • /
    • 2022
  • In July 2020, wilting symptoms were observed among adzuki bean plants (Vigna angularis var. angularis L.) in the fields in Yeosu, Korea. Infected plants showed yellowing of leaves, browning inside the stems, splitting of stem bark, and wilting. When these plants were uprooted, their roots were found to be brown. The fungal pathogens NC20-737, NC20-738, and NC20-739 were isolated from symptomatic stem and root tissues. These pathogens were identified as a Fusarium fujikuroi species complex based on their morphological characteristics. Molecular identification was performed using the DNA sequence of translation elongation factor 1 alpha and the RNA polymerase II second largest subunit regions. The nucleotide sequences of all three isolates were similar to the F. fujikuroi reference isolates NRRL 13566 and NRRL 5538 of the National Centre for Biotechnology Information GenBank. A pathogenicity test was conducted by the soil inoculation method with cornmeal sand inoculum. Approximately 3 weeks after inoculation, symptoms were observed only in the inoculated adzuki bean seedlings. To the best of our knowledge, this is the first report of Fusarium root rot caused by F. fujikuroi in adzuki beans, both in Korea and worldwide.

Bacillus subtilis C4와 B. cereus D8에 의한 유채의 생육증대 및 무름병과 균핵병 방제효과 (Effect of Bacillus subtilis C4 and B. cereus D8 on Plant Growth of Canola and Controlling Activity Against Soft Rot and Stem Rot)

  • 이재은;이서현;박경수;박진우;박경석
    • 농약과학회지
    • /
    • 제13권4호
    • /
    • pp.275-282
    • /
    • 2009
  • 선발된 PGPR 균주인 Bacillus subtilis C4와 Bacillus cereus D8 균주의 유채에 대한 생육촉진 및 무름병균인 Erwinia carotovora와 균핵병균인 Sclerotinia sclerotiorum에 대한 방제효과를 검정하기 위하여 실내검정과 온실검정을 실시하였다. 실내검정 결과, C4와 D8균주처리에 의하여 유채의 생육이 40.3%~74% 증가하였으며 무름병이 대조구에 비하여 80% 감소하였다. 실내검정에서 C4와 D8균주를 종자에 처리하였을 때 뿌리가 크게 신장되었다. 주요 식물병원균 Sclerotinia sclerotiorum, Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Colletotrichum acutatum에 대하여 항균활성시험을 수행한 결과 두 균주 중 C4균주는 모든 병원성 곰팡이에 대하여 항균활성을 나타내었다. 온실검정에서 C4와D8균주처리는 대조구에 비하여 유채의 초장, 엽폭 및 엽장을 19.5%~24.9%, 11.3%~15.3%, 14.1%~20.7% 각각 증가시켰으며 균핵병균인 Sclerotinia sclerotiorum에 대한 억제효과가 우수하였다. 이와 같은 결과를 볼 때 C4, D8 균주 처리는 유채의 생육을 촉진시키며 유채에 저항성을 유도하므로 친환경생물방제에 적용할 수 있을 것으로 생각된다.

Erwinia carotovora subsp. carotovora에 의한 고추 마디 무름병 (Bacterial Node Soft Rot of Pepper (Capsicum annuum L.) Caused by Erwinia carotovora subsp. carotovora)

  • 정기채;임진우;김승한;임양숙;김종완
    • 한국식물병리학회지
    • /
    • 제14권6호
    • /
    • pp.741-743
    • /
    • 1998
  • A bacterial disease of pepper (Capsicum annuum L.) that rooted the stem nodes to black was found in pepper plants which cultivated in plastic house at Chungdo, Kyungpook, Korea in March, 1998. Bacterial isolates derived from the diseased peppers were pathogenic to potato, eggplant and Chinese cabbage but, was not pathogenic to chrysanthemum by artificial inoculation. On the basis of bacteriological characteristics and pathogenicity test on host plants, the causal organism of the node soft rot of pepper is identified as Erwinia carotovora subsp. carotovora and the name of disease is proposed as bacterial node soft rot of pepper.

  • PDF

Occurrence of Sclerotium Rot in Allium tuberosum Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Song, Won-Doo;Choi, Ok-Hee
    • Mycobiology
    • /
    • 제39권3호
    • /
    • pp.230-232
    • /
    • 2011
  • In this study, we characterized sporadically occurring sclerotium rot caused by Sclerotium rolfsii in Chinese chive (Allium tuberosum Roth.) in farm fields in Sacheon, Korea. The initial symptom of the disease was water-soaked, which progressed to rotting, wilting, blighting, and eventually death. Further, mycelial mats spread over the lesions near the soil line, and sclerotia formed on the scaly stem and leaves. The sclerotia were globoid, 1~3 mm, and white to brown. The optimum temperature for growth and sclerotia formation on potato dextrose agar (PDA) was $30^{\circ}C$. The diameter of the hypae ranged from 4 to 8 ${\mu}m$. Clamp connection was observed on PDA medium after 5 days of incubation. Based on the mycological characteristics, internal transcribed spacer sequence analysis, and pathogenicity test, the causal agent was identified as Sclerotium rolfsii Saccardo. This is the first report of sclerotium rot in Chinese chive caused by S. rolfsii in Korea.

Occurrence of Anthracnose on Indian Fig Cactus Caused by Glomerella cingulata and Colletotrichum gloeosporioides

  • Kim, Wan-Gyu;Cho, Weon-Dae;Jee, Hyeong-Jin;Hong, Soon-Yeong
    • The Plant Pathology Journal
    • /
    • 제16권5호
    • /
    • pp.294-296
    • /
    • 2000
  • Anthracnose symptoms were frequently found on stems of Indian fig cactus in Cheju island of Korea in 1998 and 1999. Typical symptoms were gray to black dry rot of stems with concentric arrays of dot-like spots. A Glomerella sp. or a Colletotrichum sp. was frequently isolated from the symptoms, both of which were identified as Glomerella cingulata and its anamorph, Colletotrichum gloeosporioides based on their morphological and cultural characteristics. Out of 31 isolates obtained from the symptoms, 12 isolates were the anamorph producing only conidia, four isolates the telemorph producing only ascospores, and 15 isolates the holomorph producing both spores on potato dextrose agar. Stem rots similar to the original anthracnose symptoms were induced by wound inoculation of conidia and ascospores but not by non-wound inoculation. The anamorphic isolates caused more extensive stem rot than the telemorphic and holomorphic ones.

  • PDF

First Report of Soft Rot by Pectobacterium carotovorum subsp. brasiliense on Amaranth in Korea

  • Jee, Samnyu;Choi, Jang-Gyu;Hong, Suyoung;Lee, Young-Gyu;Kwon, Min
    • 식물병연구
    • /
    • 제24권4호
    • /
    • pp.339-341
    • /
    • 2018
  • Amaranth has the potential for good materials related to nutrients and health benefits. There are several diseases of amaranth such as leaf blight, damping-off, and root rot. As a causal agent of soft rot disease, Pectobacterium spp. could infect various plant species. In this study, we isolated the bacterial pathogen causing soft rot of amaranth in South Korea. In Gangneung, Gangwon province during 2017, amaranth plants showed typical soft rot symptoms such as wilting, defoliation and odd smell. To isolate pathogen, the macerated tissues of contaminated amaranth were spread onto LB agar plates and purified by a single colony subculture. One ml bacterial suspension of a representative isolate was injected to the stem of five seedlings of 2-week-old amaranth with a needle. Ten mM magnesium sulfate solution was used as a negative control. 16S rDNA gene and recA gene were sequenced and compared with the reference sequences using the BLAST. In the phylogenetic tree based on 16S rDNA gene and recA gene, GSA1 strain was grouped in Pcb.

First Report of Melon Soft Rot Disease Caused by Pectobacterium brasiliense in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;Soo-Min Hong;Seung-Yeol Lee;Jeung-Sul Han;Hee-Young Jung
    • 식물병연구
    • /
    • 제29권3호
    • /
    • pp.310-315
    • /
    • 2023
  • In May 2021, characteristic soft rot symptoms, including soft, watery, slimy, black rot, wilting, and leaf collapse, were observed on melon plants (Cucumis melo) in Gokseong, Jeollanam-do, Korea. A bacterial strain, designated KNUB-06-21, was isolated from infected plant samples, taxonomically classified, and phylogenetically analyzed using 16S rRNA and housekeeping gene sequencing. Strain KNUB-06-21 was also examined for compound utilization using the API ID 32 GN system and strain KNUB-06-21 was identified as Pectobacterium brasiliense. Subsequent melon stem inoculation studies using strain KNUB-06-21 showed soft rot symptoms similar to field plants. Re-isolated strains shared phenotypic and molecular characteristics with the original P. brasiliense KNUB-06-21 strain. To our knowledge, ours is the first report of P. brasiliense causing melon soft rot disease in Korea.