Bacillus subtilis C4와 B. cereus D8에 의한 유채의 생육증대 및 무름병과 균핵병 방제효과

Effect of Bacillus subtilis C4 and B. cereus D8 on Plant Growth of Canola and Controlling Activity Against Soft Rot and Stem Rot

  • 이재은 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 이서현 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 박경수 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 박진우 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 박경석 (농촌진흥청 국립농업과학원 농업미생물과)
  • Lee, Jae-Eun (Microbial Resources Lab, Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Lee, Seo-Hyeun (Microbial Resources Lab, Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Park, Kyung-Soo (Microbial Resources Lab, Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Park, Jin-Woo (Microbial Resources Lab, Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Park, Kyung-Seok (Microbial Resources Lab, Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
  • 발행 : 2009.12.31

초록

선발된 PGPR 균주인 Bacillus subtilis C4와 Bacillus cereus D8 균주의 유채에 대한 생육촉진 및 무름병균인 Erwinia carotovora와 균핵병균인 Sclerotinia sclerotiorum에 대한 방제효과를 검정하기 위하여 실내검정과 온실검정을 실시하였다. 실내검정 결과, C4와 D8균주처리에 의하여 유채의 생육이 40.3%~74% 증가하였으며 무름병이 대조구에 비하여 80% 감소하였다. 실내검정에서 C4와 D8균주를 종자에 처리하였을 때 뿌리가 크게 신장되었다. 주요 식물병원균 Sclerotinia sclerotiorum, Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Colletotrichum acutatum에 대하여 항균활성시험을 수행한 결과 두 균주 중 C4균주는 모든 병원성 곰팡이에 대하여 항균활성을 나타내었다. 온실검정에서 C4와D8균주처리는 대조구에 비하여 유채의 초장, 엽폭 및 엽장을 19.5%~24.9%, 11.3%~15.3%, 14.1%~20.7% 각각 증가시켰으며 균핵병균인 Sclerotinia sclerotiorum에 대한 억제효과가 우수하였다. 이와 같은 결과를 볼 때 C4, D8 균주 처리는 유채의 생육을 촉진시키며 유채에 저항성을 유도하므로 친환경생물방제에 적용할 수 있을 것으로 생각된다.

The effect of two plant growth-promoting rhizobacteria (PGPR) on plant growth and systemic protection against soft rot disease and stem rot disease of canola (Brassica napus), caused by Erwinia carotovora and Sclerotinia sclerotiorum was investigated in a laboratory and a greenhouse. Selected PGPR strains C4 and D8 were treated to canola seeds by soaking. Strains C4 and D8 significantly not only increased plant height and root length about 74% and 40.3% and also reduced disease severity of soft rot disease by 80% by C4 and D8 respectively, compared to the control. Especially strain C4 showed antifungal activity against 6 fungal pathogens, S. sclerotiorum, Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici and Colletotrichum acutatum. In greenhouse experiment, the seed treatment of both of them increased plant height, leaf width and leaf length of canola plant to 19.5% and 24.9%, 11.3% and 15.3%, and 14.1% and 20.7% by C4 and D8, respectively, and reduced disease severity of S. sclerotiorium. These results indicate that these two PGPR strains can decrease disease severity and increased plant growth under greenhouse condition. Therefore, these two bacteria have a potential in controlling Sclerotinia stem rot of canola. These strains have to investigate under field condition to determine their role of antibiosis, induced systemic resistance and plant growth promotion on canola.

키워드

참고문헌

  1. Asaka O. and Shoda M. (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085
  2. Boyetchko S.M. (1999) Biological control agents of canola and rapeseed diseases-status and practical approaches. In Mukerji K., Chamola B. and Upadhyay R., eds. Biotechmological approaches in biocontrol of plant pathogens. New York: Kluwer Acadimic / Plemum Publishers. pp. 51-71
  3. Chanway C.P. (1997) Inoculation of tree roots with plant growth-promoting soil bacteria: An emerging technology for reforestation. For. Sci. 43:99-112
  4. Chen T.W. and Wu W.S. (1999) Biological control of carrot black rot. J. Phytopathol. 147:99-104
  5. Choudhary D.K., Johri B.N. (2009) Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513 https://doi.org/10.1016/j.micres.2008.08.007
  6. Chun J. (1995) Computer assisted classification and identification of actinomycetes. Ph. D. Thesis, University of Newcatle, Newcatle upon Tyne, UK
  7. Felsenstein J. (1993) PHYLIP (phylogenetic inference package). Version 3.5c. Department of Genetics, University of Washington, Seattle, USA
  8. Fernando W.G.D., Nakkeeran S., Zhang Y. and Savchuk S. (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop. Protect. 26:100-107 https://doi.org/10.1016/j.cropro.2006.04.007
  9. Fuller P., Coyne D. and Steadman J. (1984) Inheritance of resistance to white mold disease in a diallel cross of dry beans. Crop. Sci. 24:929-933 https://doi.org/10.2135/cropsci1984.0011183X002400050025x
  10. Garcia, J.A.L., Probanza A., Ramos B., Palomino M.R. and Manero F.J.G., (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie. 24:169-176 https://doi.org/10.1051/agro:2004020
  11. Glick B.R. (1995) The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41:109-117 https://doi.org/10.1139/m95-015
  12. Glick B.R., Patten C.L., Holguin G. and Penrose D.M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, United Kingdom, pp. 267
  13. Godoy G., Steadman J.R., and Yuen G. (1990) Bean blossom bacteria have potential for biological control of white mold disease caused by Sclerotinia sclerotiorum. Annu. Rep. Bean. Improv. Coop. 33:45-46
  14. Hoffland E., Hakulinen J. and van Pelt J.A. (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology. 86:757-762 https://doi.org/10.1094/Phyto-86-757
  15. Idriss E.E, Makarewicz O., Farouk A., Rosner K., Greiner R., Bochow H., Richter T. and Borriss R. (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology. 148:2097-2109
  16. Jetiyanon K. and Kloepper J.W. (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant disease. Biol. Control. 24:285-291 https://doi.org/10.1016/S1049-9644(02)00022-1
  17. Joo G.J., Kim Y.M., Lee I.J., Song K.S., and Rhee I.K.. (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26:487-491 https://doi.org/10.1023/B:BILE.0000019555.87121.34
  18. Kimura M. (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16:111-120 https://doi.org/10.1007/BF01731581
  19. Kloepper J.W. and Schroth M.N. (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of 4th International Conference on Plant Pathogenic Bacteria 2:879-882
  20. Kloepper J.W., Tuzun S., Kuc J.A. (1992) Proposed definitions related to induced disease resistance. Biocontrol. Sci. Technol. 2:349-51 https://doi.org/10.1080/09583159209355251
  21. Kloepper J.W., Ryu C.M. and Zhang S. (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94:1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  22. Kloepper J.W. (1993) Plant growth-promoting rhizobacteria as biological control agents. P. 255-274 in Soil microbial ecology-applications in agricultural and environmental management. Metting, F.B., Jr. (ed.). Marcel Dekker, New York
  23. Kloepper J.W. (1994) Plant growth-promoting rhizobacteria. In: Okon, Y. (Ed.), Azospirillum/Plant Associations. CRC Press, Boca Raton, FL, pp. 137-166
  24. Kloepper J.W., Lifshitz R. and Zablotowicz R.M. (1989) Free living bacterial inocula for enhancing crop productivity. Trends. Biotechnol. 7:39-44 https://doi.org/10.1016/0167-7799(89)90057-7
  25. Liu L., Kloepper J.W. and Tuzum S. (1995) Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology. 85: 1064-1068 https://doi.org/10.1094/Phyto-85-1064
  26. Lucas-Garcia J.A., Probanza A., Ramos B., Colon-Flores J.J. and Gutierez-Manero F.J. (2004) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, nodulation and growth of Lupinus albus I.cv. Multolupa, Eng. Life Sci. 4:71-77 https://doi.org/10.1002/elsc.200400013
  27. Pieterse C.M.J., van Wees S.C.M., Hoffland E., van Pelt J.A. and van Loon L.C. (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid and pathogenesis-related gene expression. Plant Cell 8:1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  28. Pinchuk I.V., Bressollier P., Sorokulova I., Verneuil B. and Urdaci M.C. (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res. Microbiol. 153:269-276 https://doi.org/10.1016/S0923-2508(02)01320-7
  29. Park M.S., Jung S.K., Lee M.S., Kim K.O., Do J.O., Lee K.H., Kim S.B. and Bae K.S. (2005) Isolation and characterization of bacteria associated with two sand dune plant species Calystegia soldanella and Elymus mollis. J. Microbiol. 43:219-227
  30. Park K.S., Paul D., Kim Y.K., Nam K.W., Lee Y.K., Choi H.W. and Lee S.Y. (2007) Induce systemic resistance by Bacillus vallismortis EXTN-1 supressed bacterial wilt in tomato caused by Ralstonia solanacearum. P.P.J. 23:22-25
  31. Podile A.R. and Prakash A.P. (1996) Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Can. J. Microbiol. 42:533-538 https://doi.org/10.1139/m96-072
  32. Priest F. (1993) Systematics and ecology of Bacillus. In: Bacillus subtilis and other gram-positive bacteria, biochemistry, physiology, and molecular genetics. Washington:ASM Press; pp. 3-16
  33. Raupach G.S., Liu L., Murphy J.F., Tuzun S. and Kloepper J.W. (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumo virus using plant growth-promoting rhizobacteria (PGPR). Plant Dis. 80:891-894 https://doi.org/10.1094/PD-80-0891
  34. Raupach G.S. and Kloepper J.W. (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 88:1158-1164 https://doi.org/10.1094/PHYTO.1998.88.11.1158
  35. Raymer P.L. (2002) Canola: An emerging oilseed crop. Trends in new crops and new uses. ASHS Press, Alexandria, VA
  36. Ryu C.-M., Farag M.A., Hu C-H., Reddy M.S., Wei H-X., Par P.W. and Kloepper J.W. (2003) Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100:4927-4932 https://doi.org/10.1073/pnas.0730845100
  37. Sorensen J. (1997) The rhizosphere as a habitat for soil microorganisms. In van Elsas J. D., Trevors J. T. and Welington E. M. H. (Eds.). Modern Soil Ecology (pp. 21-46). New York: Marcel Dekker, Inc.
  38. Tu J.C. (1997) Biological control of white mould in white bean using Trichoderma viride, Gliocladium roseum and Bacillus subtillis as protective foliar spray. In proceedings of 49th International Symposium on Crop Protection. 6. May 1997, Genr. Part IV. Meded. Fac. Landbouwkd. Toegep. Biol. Wet. Univ. Gent, 62:979-986
  39. van Loon L.C., Bakker P.A.H.M and Pieterse C.M.J. (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  40. van Peer R., Niemann G.J. and Schippers B. (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology. 81:728-734 https://doi.org/10.1094/Phyto-81-728
  41. Wei G., Kloepper J.W. and Tuzun S. (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 81:1508-1512 https://doi.org/10.1094/Phyto-81-1508
  42. Wei G., Kloepper J.W. and Tuzun S. (1996) Induced systemic reisistance to cucumber disease and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology. 86:221-224 https://doi.org/10.1094/Phyto-86-221
  43. Yu G.Y., Sinclair J.B., Hartman G.L. and Bertagnolli B.L. (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil. Biol. Biochem. 34:955-963 https://doi.org/10.1016/S0038-0717(02)00027-5