• Title/Summary/Keyword: Stem production

Search Result 839, Processing Time 0.03 seconds

Influence of Soil Salinity on the Growth Response and Inorganic Nutrient Content of a Millet Cultivar (토양염농도에 따른 기장의 생장반응 및 무기양분함량 변화)

  • Kim, Sun;Ryu, Jin-Hee;Kim, Young-Joo;Jeong, Jae-Hyeok;Lee, Su-Hwan;Oh, Yang-Yeol;Kim, Young-Doo;Kim, Jae-Hyen
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • This experiment was conducted to identify the variations in inorganic nutrients and plant growth in millet (Panicum miliaceum L.) due to soil salinity. The soil series was Munpo and soil texture was silt loam. The experimental soil was amended so that the soil had salinities of $0.8dS\;m^{-1}$, $1.6dS\;m^{-1}$, $3.2dS\;m^{-1}$ and $4.8dS\;m^{-1}$. Millet was transplanted 15 days after sowing. As soil salinity increased, the degree of reduced growth was in the order of seed production > root dry matter > plant dry matter > culm length > tiller number > stem thickness > Panicle length. Seed production was decreased to 18.9% in soil salinity of $1.6dS\;m^{-1}$, 36.9% in of $3.2dS\;m^{-1}$, and 50.7% in EC of $4.8dS\;m^{-1}$. Root dry matter decreased to 35.8% in EC of $3.2dS\;m^{-1}$, and to 40.5% in EC of $4.8dS\;m^{-1}$. As soil salinity increased, Total nitrogen content increased in all aboveground parts, roots and seeds. However, There was no difference in CaO, $P_2O_5$, $K_2O$ and, MgO in soils of different salinity. On the other hand, $Na_2O$ content was higher in the order roots> shoots> seed, and in the case of roots, $Na_2O$ content increased to 1.02% in soil salinity of $4.8dS\;m^{-1}$. However, up to soil salinity of $1.6dS\;m^{-1}$, the $Na_2O$ content of the seed was similar to that in plant grown in the Control conditions($0.8dS\;m^{-1}$). In conclusion, taking into consideration economic factors, millet could be cultivated in soil with salinities of up to approximately $1.6dS\;m^{-1}$, and seed produced from reclaimedland would be suitable for human consumption.

Studies on the MSM (Methyl Sulfonyl Methane) Treatment Method of Soybeans (콩의 MSM (Methyl Sulfonyl Methane) 처리 방법에 관한 연구)

  • Se Eun Chae;Seung Ka Oh;Young-Son Cho;Doobo Shim;Dong-Kyung Yoon;Seung Ho Jeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • This experiment was conducted at the affiliated farm of the Suncheon University from 2022 to 2023 to investigate the growth, yield, and quality characteristics of soybeans based on the treatment method of Methyl Sulfony Methane (MSM) for the establishment of stable production practices. In the initial investigation of growth characteristics in 2022, an increasing trend in characteristics such as plant height, stem thickness, and branching index was observed as the treatment concentration increased from 50% to 200%. Yield components also followed the same trend, with the basal fertilization + top dressing 3 times at 200% treatment showing the highest yield at 355 kg·10a-1, with the highest number of pods. In the subsequent study to determine the optimal concentration exceeding 200% in 2023, growth characteristics showed a trend of 400% > 200% > 800%. The basal fertilization + top dressing 3 times at 400% treatment exhibited the longest plant height (106.7 cm) and the most branches (6). In terms of seed quality, this treatment also had the highest proportion (66.9%) of seeds with a diameter over 6.7 mm. Additionally, in yield components such as pods, seeds per pod, and 100-seed weight, the basal fertilization + top dressing 3 times at 400% treatment showed the highest values, resulting in a maximum yield of 374 kg·10a-1, representing a 23.4% increase compared to the control. Therefore, for the optimal production of high-quality soybeans, it is recommended to apply the treatment of basal fertilization + top dressing 3 times at 400% concentration, with top dressing occurring at 30-day intervals before harvest.

Whitening activity of Ficus carica L. fruits extract through inhibition of tyrosinase and MITF expression (무화과(Ficus carica L.) 열매 추출물의 tyrosinase 및 MITF 발현 억제를 통한 미백 활성)

  • Min Ji Kim;Si Eun Park;Geun soo Lee;Jin Hwa Kim;Sunwoo Kwon;Hyung Seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.204-212
    • /
    • 2023
  • Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.

Study on Forage Cropping System Adapted to Soil Characteristics in Reclaimed Tidal Land (간척지 토양특성에 알맞은 사료작물 작부체계 연구)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Kim, Sun;Jeong, Jae-Hyeok;Baek, Nam-Hyun;Choi, Weon-Young;Lee, Sang-Bok;Kim, Young-Doo;Kim, Si-Ju;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.385-392
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal and Gyehwa region of Saemangum reclaimed tide land from October, 2009 to October, 2011. Whole crop barley (WCB), Rye, Italyan-ryegrass (IRG) as winter crops and Corn, Sorghum${\times}$sudangrass hybrid (SSH) as summer crops were cultivated. Soil chemical properties, nutrient uptake, feed value, growth and yield were examinated. The testing soil was showed saline alkali soil where the contents of organic matter, available phosphate and exchangeable calcium were very low, while exchangeable sodium and magnesium were higher. Changes of soil salinity during the growing season of forage crops were less than 0.2%, and the growth of forage crops was not affected by salt injury. Standing rates of winter crops were higher in the order of Rye, WCB, and IRG, while the dry matter yield of winter crops was higher in the order of IRG, Rye and WCB. The highest crude protein (CP) content was recorded in IRG, and total digestive nutrients (TDN) contents were increased in the order of WCB, IRG, and Rye. The TDN content was higher in corn, whereas other feed value was higher in SSH. The content of mineral nutrients on stem, leaf and grain in IRG, Corn were high. After experiment pH was lowed, contents of exchangeable magnesium, sodium and organic matter were decreased while contents of total nitrogen, available phosphate and exchangeable potassium, calcium were increased. Winer crops and summer crops after continually cultivating in cropping system, fresh matter yield increased, compared to WCB-Corn (74,740 kg $ha^{-1}$), IRG-SSH 10%, IRG-Corn 7%, Rye-SSH 6%, Rye-Corn and WCB-SSH 3%. Dry matter yield increased, compared to WCB-Corn (20,280 kg $ha^{-1}$), IRG-SSH 7%, Rye-SSH 6%, IRG-Corn/Rye-Corn/WCB-SSH 3%. The TDN yield increased, compared to WCB-Corn (13,830 kg $ha^{-1}$), IRG-SSH 2%, WCB-SSH and IRG-Corn 1%. Therefore, we suggest that the crop combination of IRG-SSH and WCB-SSH would be preferred for silage stable production.

Effects of Nitrogen Fertilization Increment on Forage Crops Cultivation in Saemangum Reclaimed Land (새만금간척지 사료작물 재배시 질소증비 효과)

  • Yang, Chang-Hyu;Kim, Sun;Lee, Jang-Hee;Baek, Nam-Hyun;Kim, Taek-Kyum;Choi, Weon-Young;Jeong, Jae-Hyuk;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.235-240
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal region of Saemangum reclaimed land in which the soil is sandy loam (Munpo series). There were two treatments of nitrogen fertilization 20% increment based on the standard fertilization of 150, $200kg\;ha^{-1}$. Whole crop barley as the winter crop sowed on 27 October. After the whole crop barley was harvested at the end of May. Corn and sorghum${\times}$sudangrass as the summer crop sowed at the early of June successively on the same field. Emergence rate the whole crop barley was high while the summer crops were low. Soil salinity was increased during cultivation of summer crops. However, corn and sorghum${\times}$sudangrass were not damaged by salt. Increase of nitrogen fertilization made the growth of cultivation crops good, stem and leaf tended to have a lot of the mineral nutrients at heading stage and silking stage. After experiment, among soil chemical properties pH, content of exchangeable sodium were decreased and content of organic matter, available phosphate were increased. Dry matter yield were showed whole crop barley $13,170kg\;ha^{-1}$ and sorghum${\times}$sudangrass $19,440kg\;ha^{-1}$ by increment of nitrogen fertilization. Therefore, to improve the product and nutrient balance of reclaimed saline land comprehensive soil management should be considered.

Analysis of Precipitate Formation Reaction for Measuring Chemical Reaction Rate and Its Development Appling Small-Scale Chemistry (앙금 생성 반응을 이용한 화학반응속도 측정 실험의 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Park, Kuk-Tae;Noh, Ji-Hyun;Kim, Dong-Jin;Ryu, Ran-Yeong;Noh, Yun-Mi;Kim, Myo-Kyung;Lee, Sang Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.303-314
    • /
    • 2008
  • The purpose of this study was to understand the experiment for measuring chemical reaction rate by precipitate formation and to develop experiments applying small-scale chemistry. For this study, the experimental method for measuring the effect of concentration and temperature on chemical reaction rates presented in the 10 high school science textbooks were classified by their experimental methods of confirming production. Subsequently, problems observed in carrying out the experiments for measuring chemical reaction rates by precipitate formation frequently presented in the 10 high school science textbooks were analyzed. Experiments applying small-scale chemistry were developed measuring chemical reaction rate by precipitate formation. According to the result of this study, there were some problems in the experimental method of precipitate formation for measuring chemical reaction rates presented in the high school science textbooks. Those problems in the science textbook experiments were insufficient specification of mixing methods of reaction solutions, obscurity of knowing when the character letter X disappeared, time delay in collecting the experimental data, formation of hazardous sulfur dioxide, uneasiness of fixing water bath container, controlling the reaction temperature, and low reproducibility. Those problems were solved by developing experiments applying smallscale chemistry. Presenting the procedure of mixing reaction solutions on the A4 reaction paper sheet made the experimental procedure clearly, using well plates and stem pipette shortened the reaction time and made it possible to continuously collect the experimental data. Furthermore, the quantity of hazardous sulfur dioxide was reduced 1/7 times and the time when the character letter X disappeared could be observed clearly. Since experiments for measuring the effect of concentration and temperature on chemical reaction rates could be performed in 30 minutes, the developing experiments applying SSC would help students understand the scientific concepts on the effect of concentration and temperature on chemical reaction rates with enough time for experimental data analysis and discussion.

Effect of Day/Night Temperatures during Seedling Culture on the Growth and Nodes of Early Flower Cluster Set of 'Seokwang' Tomato (Lycopersicum esculentum Mill.) (육묘시의 주야간 기온이 서광 토마토의 생육 및 초기 착화 절위에 미치는 영향)

  • 김오임;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • This study was carried out to examine the effect of day/nignt temperatures during seedling culture on the vegetative and reproductive growth of Lycopersicum esculentum ‘Seokwang’. The study was consisted of two culture stages, plug seedling production in the growth chamber and hydroponic culture of the plant in a glasshouse. Experiments were replicated over time. The germinated seedlings were raised for 33 days (experiment 1) and 35 days (experiment 2) in 4 growth chambers, each with day/night temperatures of either $25^{\circ}C$/$25^{\circ}C$, 16$^{\circ}C$/16$^{\circ}C$, 16$^{\circ}C$/$25^{\circ}C$ or $25^{\circ}C$/16$^{\circ}C$. Cool-white fluorescent lamps provided 140$\mu$mol.m$^{-2}$ .s$^{-1}$ light for 12h each day. In the second experiment, all chambers were supplied with 1000$\mu$mol.mol$^{-1}$ CO$_{2}$ during the photoperiod and had an air velocity of 0.3m.s$^{-1}$ and relative humidity of 80%. Plug seedlings raised were transplanted to rockwool slabs in a glasshouse and were grown hydroponically using the same nutrient solutions used for seedling culture for 37 days (experiment 1) and 35 days (experiment 2). Plant height was affected more by mean daily temperature than by interaction of day and night temperatures. Plant height was the highest in 16/16$^{\circ}C$ treatment. Leaf count was not affected by day and night temperatures, and the chlorophyll concentration was the highest in 16/$25^{\circ}C$ treatment. Fresh and dry weights of stem tended to be greater in treatments of constant day and night temperature. The number of node on which first and second flower clusters were set was significantly higher in 25/$25^{\circ}C$ treatment than in the other treatments. Days to flower of the first flower on the first flower cluster were the greatest in 25/$25^{\circ}C$ and the least in 16/$25^{\circ}C$ treatment. Vegetative and reproductive growth, such as height, fresh and dry weights, days to flower, and nodes of the 1st and 2nd flower cluster set were affected by day/night temperatures.

  • PDF

Effect of seeding date on growth , dry matter accumulation and chemical composition of sorghum , sudangrass and sorghum-sudangrass Hybrid (파종기 이동이 수수 , 수단그라스 및 수수$\times$수단그라스 교잡종의 생육 , 건물축적 및 성분 함량에 미치는 영향)

  • 한흥전;안수봉
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.62-72
    • /
    • 1985
  • In order to find out the effects of seeding time on growth, dry matter production and nutritive content of Pioneer 931, Pioneer 988 and Piper, this study was carried out on the experimental field of Livestock Experiment Station in 1981-83. Seeding time were 7 with 14-day interval from April 16 to July 9. The results are summarized as follows: 1. It tool about 12 to 13 days from seeding to emergence in case of Mid-April seeding and 7 to 8 days in Late-June. Earlier seeding, more longer growth period from emergence to heading they required. 2. Plant height of Pioneer 931 seeded lately was longer than 4.5 meters in primary growth and Sudangrass was about 2.0 to 2.5 meters. Leaf area was the greatest in Mid-August by early seeding but it was increased until Early-October by late seeding. 3. Sorghum gas brought the highest yield in dry mater and Sudangrass the lowest. In general dry matter yield reduced gradually in response to later seeding but Pioneer 931 has brought more than 10 tons per hecter until Late-June. 4. Relative Growth Rate, Leaf Area Ratio and Leaf Weight of all varieties decreased in accordance with growth development. 5. Crude protein content of leaf was higher than stem and the younger the plants, the more protein they contain. Nitrogen Free Extract was just opposite to crude protein.

  • PDF

Fruit Characteristics of New Cultivar 'Autumn sense' of Hardy Kiwi (Actinidia arguta) by Stem Pruning (전정에 의한 신품종 다래 '오텀센스'의 과실 특성)

  • Kim, Chul-Woo;Kim, Mahn-Jo;Kim, Jae-Hee;Park, Youngki
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.73-77
    • /
    • 2016
  • In this study, we examined the changes of fruit number and fruit weight according to the length of bearing branch of Actinidia arguta and identified the correlation the length of bearing branch and fruit characteristics. The fruit weight and the fruit number of A. arguta bearing branch which length are below 15 cm and over 30 cm were 11.7 g, 4.3 and 12.3 g, 13.8, respectively. From the results, the bearing brach which length was below 15 cm must be removed in winter season pruning. The pruning experiment was conducted to examine the effects on fruit quality and yield of A. arguta. Total fruit yield of heavy-pruning was $14.3{\pm}1.5kg/tree$. The production of fruits over 15 g wight was $8.2{\pm}0.9kg/tree$, that of fruits between 10 g to 15 g was $4.0{\pm}0.7kg/tree$, and that of fruit below 10 g was $2.1{\pm}0.3kg/tree$, respectively. Average fruit yield of nonpruning was $26.7{\pm}2.1kg/tree$, fruit yield over 15 g, between 10 g and 15 g, and below 10 g were $2.5{\pm}0.5kg/tree$, $19.2{\pm}1.4kg/tree$, and $5.0{\pm}0.6kg/tree$, respectively. Distribution of high quality fruit (over 15 g) showed that non-pruning was almost 15~16 g but pruning was evenly distributed between 15 g and 20 g. According to the survey, The high quality fruit (over 15 g) would not be harvested if the winter pruning is not applied in the A. arguta cultivation.

Effects of soil Moisture Levels on Growth and Dry Matter Accumulation of Sorghum and Corn II. Changes of dry matter accumulation and chemical composition (토양수분함량이 수수속작물과 옥수수의 생육 및 건물합성에 미치는 영향 II. 건물축적 및 성분함량의 변화)

  • 한흥전;한민수;안수봉
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.2
    • /
    • pp.152-161
    • /
    • 1985
  • To examine the effects of different levels of soil moisture on dry matter production and chemical compositions of sorghum cv. Pioneer 931, sorghum-sudangrass hybrid cv. Pioneer 988, sudangrass cv. Piper, and corn cv. Suweon 19. Soil moisture contents were maintained with approximately 100, 80 and 40% of field moisture capacity. The results are summarized as follows; 1. The highest dry matter yields per plant were found at 60% soil moisture level with 176.2g, 180.8g and 164.0g for pioneer 931, Pioneer 988 and corn, respectively. 2. Dry matter accumulation in accordance with soil moisture levels and growth stages of all crops except sudangrass were in the order of 60>40>80>100% soil moisture level. 3. The highest absolute growth rate (AGR) of sorghum, sorghum-sudangrass hybrid and corn was shown at 60% soil moisture level, that of sudangrass was shown at 80% soil moisture level. The relative growth rate (RGR) of all crops was high in the early growing stage and was low at maturity. The highest net assimilation rate (NAR) of all crops was found at 60% soil moisture level with $72-467g/m^2/day$ from June 29 to July 5. 4. The higher crude fiber content in leaf of Pioneer 931 was shown at 100% and 80% soil moisture levels with 28.6-28.8%, that of corn had no significant difference among soil moisture levels. The crude protein content in leaf of all crops was 14.2-21.6% at 60% soil moisture level, 13.8-16.0% at 40% soil moisture level, and 7.3-13.9% at above 80% soil moisture levels, respectively. 5. The crude fiber content in stern of all crops and all soil moisture levels was 24.6-36.7%, and the crude protein content in stem was 2.5-5.3% in dry matter basis.

  • PDF