• Title/Summary/Keyword: Stem pain

Search Result 87, Processing Time 0.021 seconds

Defensive Behavior against Noxious Heat Stimuli Is Declined with Aging Due to Decreased Pain-Associated Gene Expression in Drosophila

  • Ghimire, Saurav;Kim, Man Su
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.290-295
    • /
    • 2015
  • Aging is defined as a collective process that alters organism's functional capacity and appearance over the course of life. Apart from an increase in susceptibility to many diseases, aging affects the cellular system that is responsible for decoding painful stimuli. Yet, aging-associated molecular mechanisms of pain perception remains elusive. Using Drosophila, we showed a decrease in temperature tolerance and a reduction in high temperature thermal avoidance with aging. Locomotor activity assay demonstrated that the age-dependent changes in heat nociception did not stem from the general decline in muscular activity. However, we identified pain-related gene expression alteration with aging. We anticipate that our findings would help opening a new window onto developing the optimal pain treatment for the elderly.

Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte (인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인)

  • Cho, Hye-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS (지방기질유래 줄기세포의 골 분화 시 성장인자의 효과)

  • Kim, Uk-Kyu;Choi, Yeon-Sik;Jung, Jin-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

Suppression by Microinjection of Bicuculline into Brain Stem Nuclei of Dorsal Horn Neuron Responsiveness in Neuropathic Rats (신경병증성통증 모델쥐에서 뇌간핵 부위에 미세 주입한 Bicuculline에 의한 척수후각세포의 반응도 억제)

  • Leem, Joong-Woo;Choi, Yoon;Lee, Jae-Hwan;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 1998
  • Background: The present study was conducted to investigate effects of microinjection of bicuculline, GABA-A receptor antagonist, into the brain stem nuclei on the dorsal horn neuron responsiveness in rats with an experimental peripheral neuropathy. Methods: An experimental neuropathy was induced by a unilateral ligation of L5~L6 spinal nerves of rats. After 2~3 weeks after the surgery, single-unit recording was made from wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Results: Responses of WDR neurons to both noxious and innocuous mechanical stimuli applied to the somatic receptive fields were enhanced on the nerve injured side. These enhanced responsiveness of WDR neurons were suppressed by microinjection of bicuculline into periaqueductal gray(PAG) or nucleus reticularis gigantocellularis(Gi). A similar suppression was also observed when morphine was microinjected into PAG or Gi. Suppressive action by Gi-bicuculline was reversed by naloxonazine, ${\mu}$-opioid receptor antagonist, microinjected into PAG whereas PAG-bicuculline induced suppression was not affected by naloxonazine injection into Gi. Gi-bicuculline induced suppression were reversed by a transection of dorsolateral funiculus(DLF) of the spinal cord. Conclusions: The results suggest that endogenous opioids, via acting on GABAergic interneurons in PAG and Gi, may be involved in the control of neuropathic pain by activating the descending inhibitory pathways that project to the spinal dorsal horn through DLF to inhibit the responsiveness of WDR neurons.

  • PDF

Effects of Tetrapanax papyrifer stem and Akebiae quinata stem on a rat model of monosodium iodoacetate-induced osteoarthritis (통초(通草)와 목통(木通) 추출물이 monosodium iodoacetate(MIA)로 유발된 골관절염 동물 모델에 미치는 효과)

  • Sang Nam Lee;Bu-Il Seo
    • The Korea Journal of Herbology
    • /
    • v.38 no.6
    • /
    • pp.29-44
    • /
    • 2023
  • Objectives : This study was planned to evaluate the therapeutic effectiveness and possible underlying mechanism of TPE (Tetrapanax papyrifer stem(inner part of the stem Extract) and AQE (Akebiae quinata stem Extract) on osteoarthritis. Methods : Osteoarthritis models were induced through intra-articular injection of MIA (monosodium iodoacetate) 50 μL with 80 mg/ml in rats. Excluding the normal group, Osteoarthritis-induced rats were divided into 4 groups (Control, INDO, TPE, AQE). The drug concentrations were indomethacin 5 mg/kg, TPE 200 mg/kg, and AQE 200 mg/kg, and were orally administered once a day for a couple of weeks. After drug supplementation, the effects of TPE and AQE were measured with serum diagnosis, western blotting, and histopathological staining. Results : It was found that the DPPH and ABTS free radical erasure ability of AQE was better than that of TPE. AQE administration improved rear limb overload and it led to relieving pain. Both PTE and AQE significantly reduced the expression of inflammatory mediators COX-2, iNOS, and inflammatory cytokine IL-1β and IL-6 by inhibiting the phosphorylation of IκBα and deactivating the pathway of NF-κBp65. On the other hand, TNF-α was significantly reduced only by administration of AQE. In addition, histopathological analysis showed that the administration of AQE compared to PTE suppressed cartilage degeneration and effectively suppressed damage to proteoglycan, a component of ECM. Conclusion : Reviewing these experimental results, TPE and AQE possessed the effect of delaying the progress of osteoarthritis and protecting cartilage. In addition, the results of this study show that AQE has a better cartilage protection effect than TPE.

Epidural Lysis of Adhesions

  • Lee, Frank;Jamison, David E.;Hurley, Robert W.;Cohen, Steven P.
    • The Korean Journal of Pain
    • /
    • v.27 no.1
    • /
    • pp.3-15
    • /
    • 2014
  • As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections.

Cervical Epidural Block Can Relieve Persistent Hiccups -Case report- (경부 경막외 신경차단을 이용한 2주간 계속된 딸꾹질의 치료 경험 -증례보고-)

  • Lee, Kyung-Jin;Park, Won-Sun;Chun, Tae-Wan;Kim, Chan;Nam, Yong-Taek
    • The Korean Journal of Pain
    • /
    • v.8 no.1
    • /
    • pp.131-134
    • /
    • 1995
  • Hiccup is characterized by a myoclonus in the diaphragm, resulting in a sudden inspiration associated with an audible closure of the glottis. The reflex arc in hiccups comprises three pars: an afferent, a central and an efferent part. The afferent portion of the neural pathway of hiccup formation is composed of the vagus nerve, the phrenic nerve, and the sympathetic chain arising from T6 to T12. The hiccup center is localised in the brain stem and the efferent limb comprises phrenic pathways. All stimuli affecting the above mentioned reflex arc may produce hiccups. The pathogenesis of persistent hiccups is not known. Hiccup can present a symptom of a subphrenic abscess or gastric distention, and metabolic alterations may also cause hiccups. Numerous treatment modalities have been tried but with questionable success. We describe a patient whose persistant hiccups was treated successfully by a cervical epidural block.

  • PDF

The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis

  • Askarian-Amiri, Shaghayegh;Maleki, Solmaz Nasseri;Alavi, Seyedeh Niloufar Rafiei;Neishaboori, Arian Madani;Toloui, Amirmohammad;Gubari, Mohammed I.M.;Sarveazad, Arash;Hosseini, Mostafa;Yousefifard, Mahmoud
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.43-58
    • /
    • 2022
  • Background: Current therapies are quite unsuccessful in the management of neuropathic pain. Therefore, considering the inhibitory characteristics of GABA mediators, the present systematic review and meta-analysis aimed to determine the efficacy of GABAergic neural precursor cells on neuropathic pain management. Methods: Search was conducted on Medline, Embase, Scopus, and Web of Science databases. A search strategy was designed based on the keywords related to GABAergic cells combined with neuropathic pain. The outcomes were allodynia and hyperalgesia. The results were reported as a pooled standardized mean difference (SMD) with a 95% confidence interval (95% CI). Results: Data of 13 studies were analyzed in the present meta-analysis. The results showed that administration of GABAergic cells improved allodynia (SMD = 1.79; 95% CI: 0.87, 271; P < 0.001) and hyperalgesia (SMD = 1.29; 95% CI: 0.26, 2.32; P = 0.019). Moreover, the analyses demonstrated that the efficacy of GABAergic cells in the management of allodynia and hyperalgesia is only observed in rats. Also, only genetically modified cells are effective in improving both of allodynia, and hyperalgesia. Conclusions: A moderate level of pre-clinical evidence showed that transplantation of genetically-modified GABAergic cells is effective in the management of neuropathic pain. However, it seems that the transplantation efficacy of these cells is only statistically significant in improving pain symptoms in rats. Hence, caution should be exercised regarding the generalizability and the translation of the findings from rats and mice studies to large animal studies and clinical trials.

Current Update of Cartilage Regeneration Using Stem Cells in Osteoarthritis (골관절염에서 줄기세포를 이용한 연골 재생의 최신 지견)

  • Seon, Jong-Keun;Choi, Ik-Sun;Ko, Jee-Wook
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.478-489
    • /
    • 2019
  • Osteoarthritis is a disease characterized by the progression of articular cartilage erosion, that increases pain during joint motion and reduces the ability to withstand mechanical stress, which in turn limits joint mobility and function. Damage to articular cartilage due to trauma or degenerative injury is considered a major cause of arthritis. Numerous studies and attempts have been made to regenerate articular cartilage. In the case of partial degenerative cartilage changes, microfracture and autologous chondrocyte implantation have been proposed as surgical treatment methods, but they have disadvantages such as insufficient mutual binding to the host cells, inaccurate cell delivery, and deterioration of healthy cartilage. Stem cell-based therapies have been developed to compensate for this. This review summarizes the drawbacks and consequences of various cartilage regeneration methods and describes the various attempts to treat cartilage damage. In addition, this review will discuss cartilage regeneration, particularly mesenchymal stem cell engineering-based therapies, and explore how to treat future cartilage regeneration using mesenchymal stem cells.

The Effect of Repetitive Magnetic Stimulation in an SCI Rat Model with Stem Cell Transplantation (줄기세포를 이식한 척수손상 흰쥐에서 반복자기자극의 효과)

  • Bae, Young-Kyung;Park, Hea-Woon;Cho, Yun-Woo;Kim, Su-Jeong;Lee, Joon-Ha;Kwon, Jung-Gu;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Purpose: We tested whether repetitive transcranial magnetic stimulation (rTMS) improved recovery following spinal cord injury (SCI) in rats with transplantation of adipose tissue-derived stromal cells (ATSCs). Methods: Twenty Sprague-Dawley rats (200-250 g, female) were used. Moderate spinal cord injury was induced at the T9 level by a New York University (NYU) impactor. The rat ATSCs (approximately $5{\times}10^5$ cells) were injected into the perilesional area at 9 days after SCI. Starting four days after transplantation, rTMS (25 Hz, 0.1 Tesla, pulse width=$370{\mu}s$, on/off time=3 sec/3 sec) was applied daily for 7 weeks. Functional recovery was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale as well as pain responses for thermal and cold stimuli. Results: Both groups showed similar, gradual improvement of locomotor function. rTMS stimulation decreased thermal and cold hyperalgesia after 7 weeks, but sham stimulation did not. Conclusion: rTMS after transplantation of ATSCs in an SCI model may reduce thermal hyperalgesia and cold allodynia, and may be an adjuvant therapeutic tool for pain control after stem cell therapy in SCI.