• Title/Summary/Keyword: Stem cell characteristics

Search Result 215, Processing Time 0.022 seconds

Diphlorethohydroxycarmalol of Ishige okamurae and Caffeine Modified the Expression of Extracellular Fibrillars during Adipogenesis of Mouse Subcutaneous Adipose Derived Stem Cell

  • Jeon, Younmi;Song, Siyoung;Kim, Hagju;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.275-287
    • /
    • 2013
  • Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.

A Simple Embryonic Stem Cell-Based in vitro Differentiation System That Recapitulates Early Erythropoietic Events in the Mouse Embryo (생쥐 배아에서의 초기 적혈구 분화를 재현 할 수 있는 배아주 세포에 기초한 간단한 시험관내 분화체계)

  • 김철근
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.239-247
    • /
    • 1996
  • An embryonic stem (ES) cell-based in vitro model system was examined to determine whether a simple differentiation of embryoid bodies (EB) in the suspension medium is useful to dissect early erythropoiesis. Characteristics of the differentiating EBs were monitored for their differentiation potential to generate hematopoietic cell types by general morphology, benzidine staining and two-step colony assays, and expressivity of several erythroid marker genes by the RT-PCR analysis for total cellular RNA prepared from the differentiating EBs. Every ematopoietic lineage cells were generated from the differentiating EBs with reproducible frequencies, similar to the other sophisticated differentiation protocols. Furthermore, the globin gene switching in differentiating ES cells paralleled the sequence of events found in the mouse embryo, and such that their expression was activated by at least 12 hrs later than those of erythroid-specific transcription factors, GATA-1 and Tal-1 The erythropoietic differentiation program initiated reproducibly and efficiently in this simple differentiation system in a suspension culture, such that this system may be useful for dissection of the molecular events of early erythropoiesis.

  • PDF

Differentiation Inductions Altered Telomere Length and Telomerase Activity in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Jeon, Ryoung-Hoon;Park, Byung-Joon;Jang, Si-Jung;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.93-99
    • /
    • 2019
  • Telomeres are known as a specialized region in the end of chromosomes to protect DNA destruction, but their lengths are shortened by repetition of cell division. This telomere shortening can be preserved or be elongated by telomerase and TERT expression. Although a certain condition in the cells may affect to the cellular and molecular characteristics, the effect of differentiation induction to telomere length and telomerase activity in mesenchymal stem cells (MSCs) has been less studied. Therefore, the present study aimed to uncover periodical alterations of telomere length, telomerase activity and TERT expression in the dental pulp-derived MSCs (DP-MSCs) under condition of differentiation inductions into adipocytes and osteoblasts on a weekly basis up to 3 weeks. Shortening of telomere was significantly (p < 0.05) identified from early-middle stages of both differentiations in comparison with undifferentiated DP-MSCs by non-radioactive chemiluminescent assay and qRT-PCR method. Telomere length in undifferentiated DP-MSCs was 10.5 kb, but the late stage of differentiated DP-MSCs which can be regarded as the adult somatic cell exhibited 8.1-8.6 kb. Furthermore, the relative-quantitative telomerase repeat amplification protocol or western blotting presented significant (p < 0.05) decrease of telomerase activity since early stages of differentiations or TERT expression from middle stages of differentiations than undifferentiated state, respectively. Based on these results, it is supposed that shortened telomere length in differentiated DP-MSCs was remained along with prolonged differentiation durations, possibly due to weakened telomerase activity and TERT expression. We expect that the present study contributes on understanding differentiation mechanism of MSCs, and provides standardizing therapeutic strategies in clinical application of MSCs in the animal biotechnology.

Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

  • Lee, K.S.;Cha, S.H.;Kang, H.W.;Song, J.Y.;Lee, K.W.;Ko, K.B.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.588-595
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs) were isolated from umbilical cord matrix (n = 3) and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1), molecule (HMGA2) and pluripotent markers (sox2, nanog) associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105) and pluripotent marker (Oct3/4) decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

Quality of Life in Survivors of Patients after Hematopoietic Stem Cell Transplantation and Received Chemotherapy (조혈모세포 이식 생존자와 화학요법 생존자의 삶의 질에 관한 연구)

  • Lee, Eun-Youn;Park, Hyoung-Sook;Seo, Ji-Min
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • Purpose: This study is to assess the quality of life(QOL) of hematic cancer survivors after hematopoietic stem cell transplantation(HSCT) and received chemotherapy(RC) to prepare basic information for nursing interventions in order to improve the patients' QOL. Method: The data were collected by self-reporting questionnaire from January to March, 2003 intended for outpatients at the Cancer center of D university hospital in Busan. All 44 of them were diagnosed as hematic cancer and had spent 100 days after getting HSCT and complete remission(CR) throughout RC. The collected data were analyzed with descriptive statistics, t-test, ANOVA using SPSS/WIN 10.0 program. Results: The total mean score of the QOL was moderate. In case of survivors in HSCT, the total mean score of the QOL was $5.81{\pm}1.08$, and that of survivors in RC was $5.94{\pm}1.13$. The facts above has not been considered statistically as the result of analysis of differences in each domain of the QOL depending on the general characteristics of the objects of this study. Conclusion: The total mean score of the QOL was at moderate levels, indicating that the survivors after HSCT and RC were perceiving their QOL as moderate. In the nursing business aspect, the most important thing is to understand the QOL which the 2 groups of the survivors perceive, and the plans of nursing intervention that can be helpful to more qualitative life should be studied constantly.

  • PDF

Parthenogenetic Mouse Embryonic Stem Cells have Similar Characteristics to In Vitro Fertilization mES Cells (체외수정 유래 생쥐 배아줄기세포와 유사한 특성을 보유한 단위발생 유래 생쥐 배아줄기세포)

  • Park, Se-Pill;Kim, Eun-Young;Lee, Keum-Si;Lee, Young-Jae;Shin, Hyun-Ah;Min, Hyun-Jung;Lee, Hoon-Taek;Chung, Kil-Saeng;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • Objective: This study was to compare the characteristics between parthenogenetic mES (P-mES) cells and in vitro fertilization mES cells. Materials and Methods: Mouse oocytes were recovered from superovulated 4 wks hybrid F1 (C57BL/6xCBA/N) female mice. For parthenogenetic activation, oocytes were treated with 7% ethanol for 5 min and $5{\mu}g$/ml cytochalasin-B for 4 h. For IVF, oocytes were inseminated with epididymal sperm of hybrid F1 male mice ($1{times}10^6/ml$). IVF and parthenogenetic embryos were cultured in M16 medium for 4 days. Cell number count of blastocysts in those two groups was taken by differential labelling using propidium iodide (red) and bisbenzimide (blue). To establish ES cells, b1astocysts in IVF and parthenogenetic groups were treated by immunosurgery and recovered inner cell mass (ICM) cells were cultured in LIF added ES culture medium. To identify ES cells, the surface markers alkaline phosphatase, SSEA-1, 3,4 and Oct4 staining were examined in rep1ated ICM colonies. Chromosome numbers in P-mES and mES were checked. Also, in vitro differentiation potential of P-mES and mES was examined. Results: Although the cleavage rate (${\geq}$2-cell) was not different between IVF (76.3%) and parthenogenetic group (67.0%), in vitro development rate was significantly low in parthenogenetic group (24.0%) than IVF group (68.4%) (p<0.05). Cell number count of ICM and total cell in parthenogenetic b1astocysts ($9.6{\pm}3.1,\;35.1{\pm}5.2$) were signficantly lower than those of IVF blastocysts ($19.5{\pm}4.7,\;63.2{\pm}13.0$) (p<0.05). Through the serial treatment procedure such as immunosurgery, plating of ICM and colony formation, two ICM colonies in IVF group (mES, 10.0%) and three ICM colonies (P-mES, 42.9%) in parthenogenetic group were able to culture for extended duration (25 and 20 passages, respectively). Using surface markers, alkaline phosphatase, SSEA-l and Oct4 in P-mES and mES colony were positively stained. The number of chromosome was normal in ES colony from two groups. Also, in vitro neural and cardiac cell differentiation derived from mES or P-mES cells was confirmed. Conclusion: This study suggested that P-mES cells can be successfully established and that those cell lines have similar characteristics to mES cells.

Side Population Cell Level in Human Breast Cancer and Factors Related to Disease-free Survival

  • Jin, C.G.;Zou, T.N.;Li, J.;Chen, X.Q.;Liu, X.;Wang, Y.Y.;Wang, X.;Che, Y.H.;Wang, X.C.;Sriplung, Hutcha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.991-996
    • /
    • 2015
  • Side population (SP) cells have stem cell-like properties with a capacity for self-renewal and are resistant to chemotherapy and radiotherapy. Therefore the presence of SP cells in human breast cancer probably has prognostic value. Objective: To investigate the characteristics of SP cells and identify the relationship between the SP cells levels and clinico-pathological parameters of the breast tumor and disease-free survival (DFS) in breast cancer patients. Materials and Methods: A total of 122 eligible breast cancer patients were consecutively recruited from January 1, 2006 to December 31, 2007 at Yunnan Tumor Hospital. All eligible subjects received conventional treatment and were followed up for seven years. Predictors of recurrence and/or metastasis and DFS were analyzed using Cox regression analysis. Human breast cancer cells were also obtained from fresh human breast cancer tissue and cultured by the nucleic acid dye Hoechst33342 with Verapami. Flow cytometry (FCM) was employed to isolate the cells of SP and non-SP types. Results: In this study, SP cells were identified using flow cytometric analysis with Hoechst 33342 dye efflux. Adjusted for age, tumor size, lymph nodal status, histological grade, the Cox model showed a higher risk of recurrence and/or metastasis positively associated with the SP cell level (1.75, 1.02-2.98), as well as with axillary lymph node metastasis (2.99, 1.76-5.09), pathology invasiveness type (1.7, 1.14-2.55), and tumor volume doubling time (TVDT) (1.54, 1.01-2.36). Conclusions: The SP cell level is independently associated with tumor progression and clinical outcome after controlling for other pathological factors. The axillary lymph node status, TVDT and the status of non-invasive or invasive tumor independently predict the prognosis of breast cancer.

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Coactivity of Mast Cells and Stem Cells on Angiogenesis and Antioxidants' Potentials at Inflammation, Proliferation, and Tissue Remodeling Phases of Wound

  • Mousavi, Mahshad;Khanifar, Ahmad;Mousavi, Nazanin;Anbari, Khatereh;Chehelcheraghi, Farzaneh
    • Archives of Plastic Surgery
    • /
    • v.49 no.3
    • /
    • pp.462-470
    • /
    • 2022
  • Background Reactive oxygen species cause serious damage to the physiological function of tissues. Determination of total antioxidant capacity of skin tissue is one of the determinants of damaged tissue function. Mast cells (MCs) are one of the groups of cells that are invited to the site of injury. The healing process begins with the rapid release of various types of MCs' intermediate factors at the site of injury. Bone marrow mesenchymal stem cell (BMMSC) production and secretion have been shown to regenerate the skin. The aim of this research was to evaluate the wound-healing and antioxidant effects of BMMSCs per MCs. Methods Fifty-four albino Wistar male rats were divided into three groups: (1) nonsurgery, (2) surgery, and (3) surgery + BMMSCs. Groups 2 and 3 were operated with a 3 × 8 cm flap and in group 3, cell injections (7 × 109 cell injection at the time of surgery) were performed. After days 4, 7, and 15, percentage of the surviving tissue, histological characteristics, superoxide dismutase (SOD) activity, and amount of malondialdehyde (MDA) were measured in the groups. For results, Graph Pad Prism 8 software was used, and data were analyzed and compared by analysis of variance and Tukey test. Results BMMSCs' application decreased the amount of MDA, increased SOD activity and survival rate of the flaps, and improved the histological characteristics. Conclusion This study revealed the protective effects BMMSCs alongside MCs against oxidative stress on the survival of the flaps. However, for clinical use, more research is needed to determine its benefits.

A study of mesenchymal stem cell proliferation and surface characteristics of the titanium discs coated with MS275/PLGA by an electrospray (Electrospray법을 이용한 MS275/PLGA submicron 코팅 티타늄에서의 표면변화와 간엽줄기세포증식에 관한 연구)

  • Yoo, Soo-Yeon;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Park, Yoon-Kyung;Kim, Ena
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.285-291
    • /
    • 2012
  • Purpose: This study was conducted to identify the surface characteristics of titanium discs coated with MS275/PLGA by electrospray and which is effective to mesenchymal stem cell proliferation. Materials and methods: We used anodized surface coated with PLGA as a control group and anodized surface coated with MS275 $0.5{\mu}M$, $1{\mu}M$, $1.5{\mu}M$ as test groups. To examine that the coating particles are nanometer sized, FE-SEM was used and AFM was utilized to determine the difference of coating surface roughness. We checked the mesenchymal stem cell proliferation by using MTT assay on $1^{st}$, $4^{th}$, $7^{th}$ days. Results: There was no significant difference between control groups and test groups in AFM results (P>.05). In MTT assay results, mesenchymal stem cell proliferation was increased with time, at $7^{th}$ day, cell viability on discs coated with $1.5{\mu}M$ MS275 was significantly higher than control group (P<.05). As SEM showed, the number of cells on all discs was increased and the morphology of cell attachment was also wider and closer with time. Conclusion: Titanium surface coated with MS275/PLGA showed significantly higher cell proliferation and the more density of MS275 was dispersed on titanium discs, the faster cells grew.