Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12488

Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells  

Lee, K.S. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency)
Cha, S.H. (Research Planning Division, Animal, Plant and Fisheries Quarantine and Inspection Agency)
Kang, H.W. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency)
Song, J.Y. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency)
Lee, K.W. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency)
Ko, K.B. (Research Planning Division, Animal, Plant and Fisheries Quarantine and Inspection Agency)
Lee, H.T. (Department of Animal Biotechnology, Konkuk University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.4, 2013 , pp. 588-595 More about this Journal
Abstract
Mesenchymal stem cells (MSCs) are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs) were isolated from umbilical cord matrix (n = 3) and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1), molecule (HMGA2) and pluripotent markers (sox2, nanog) associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105) and pluripotent marker (Oct3/4) decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.
Keywords
Mesenchymal Stem Cell; Umbilical Cord Matrix; Canine; Multipotent; Differentiation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aust, L., B. Devlin, S. J. Foster, Y. D. Halvorsen, K. Hicok, T. du Laney, A. Sen, G. D. Willingmyre and J. M. Gimble. 2004. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7-14.   DOI   ScienceOn
2 Barry, F. P., R. E. Boynton, S. Haynesworth, J. M. Murphy and J. Zaia. 1999. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 265:134-139.   DOI   ScienceOn
3 Bonab, M. M., K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh and B. Nikbin. 2006. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 10:7:14.
4 Cheifetz, S., T. Belloel, C. Cale's, S. Vera, C. Bernabeu, J. Massague and M. Letarte. 1992. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 267:19027-19030.
5 Cristofalo, V. J., R. G. Allen, R. J. Pignolo, B. G. Martin and J. C. Beck. 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc. Natl. Acad. Sci. 95:10614-10619.   DOI   ScienceOn
6 Danoviz, M. E., V. Bassaneze, J. S. Nakamuta, G. R. dos Santos-junior, D. Saint-Clair, M. C. Bajgelman, K. C. Fae, J. Kalil, A. A. Miyakawa and J. E. Krieger. 2011. Adipose tissue-derived stem cell from human and mice differ in proliferative capacity and genome stability in long-term culture. Stem Cells Dev. 20:661-670.   DOI   ScienceOn
7 Filioli Uranio, M., L. Valentini, A. Lange-consiglio, M. Caira, A. C. Guaricci, A. L'Abbate, C. R. Catacchio, M. Ventura, F. Cremonesi and M. E. Dell'Aquila. 2011. Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Mol. Reprod. Dev. 78:361-373.   DOI   ScienceOn
8 Hargus, G., R. Kist, J. Kramer, D. Gerstel, A. Neitz, G. Scherer and J. Rohwedel. 2008. Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. Int. J. Dev. Biol. 52:323-332.   DOI   ScienceOn
9 Hatami, M., N. Z. Mehrjardi, S. Kiani, K. Hemmesi, H. Azizi, A. Shahverdi and H. Baharvand, 2009. Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11:618-630.   DOI   ScienceOn
10 Ito, Y., Jr. P. Bringas, A. Mogharei, J. Zhao, C. Deng and Y. Chai. 2002. Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factor betamediated Meckeldi cartilage development. Dev. Dyn. 224:69-78.   DOI   ScienceOn
11 Izadpanah, R., D. Kausha, C. Kriedt, F. Tsien, B. Patel, J. Dufour and B. A. Bunnell. 2008. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 68:4229-4238.   DOI   ScienceOn
12 Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg and J. U. Yoo. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265-272.   DOI   ScienceOn
13 Neupane, M., C. C. Chang, M. Kiupel and V. Yuzbasiyan- Gurkan. 2008. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng. Part A. 14:1007-1015.   DOI
14 Mitchell, J. B., K. McIntosh, S. Zvonic, S. Garrett, Z. E. Floyd, A. Kloster, Y. Di Halvorsen, R. W. Storms, B. Goh, G. Kilroy, X. Wu and J. M. Gimble. 2006. Immunophenotype of human adipose-derived cells: temporal changes in stromal associated and stem cell-associated markers. Stem Cells 24:376-385.   DOI   ScienceOn
15 Rubio, D., J. Garcia-Castro, M. C. Martin, R. de la Fuente, J. C. Cigudosa, A. C. Lloyd and A. Bernad. 2005. Spontaneous human adult stem cell transformation. Cancer Res. 65:3035-3039.
16 Pittenger, M. F. and B. J. Martin. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9-20.   DOI   ScienceOn
17 Romanov, Y. A., V. A. Svintsitskaya and V. N. Smirnov. 2003. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105-110.   DOI   ScienceOn
18 Røsland, G. V., A. Svendsen, A. Torsvik, E. Sobala, E. McCormack, H. Immervoll, J. Mysliwietz, J. C. Tonn, R. Goldbrunner, P. E .Lønning, R. Bjerkvig and C. Schichor, 2009. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69:5331-5339.   DOI   ScienceOn
19 Safwani, W. K., S. Makpol, S. Santhapan, K. H. Chua. 2012. Alteration of gene expression level during osteogenic induction of human adipose derived stem cells in long term culture. Cell Tissue Bank. DOI:10.1007/s10561-012-9309-1.   DOI   ScienceOn
20 Schugar, R. C., S. M. Chirieleison, K. E. Wescoe, B. T. Schmidt, Y. Askew, J. J. Nance, J. M. Evron, B. Peault and B. M. Deasy. 2009. High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J. Biomed. Biotechnol. doi:10.1155/789526.
21 Secco, M., E. Zucconi, N. M. Vieira, L. L. Fogaca, A. Cerqueira, M. D. Carvalho, T. Jazedje, O. K. Okamoto, A. R. Muotri and M. Zatz. 2008. Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells 26:146-150.   DOI   ScienceOn
22 Seo, M. S., Y. H. Jeong, J. R. Park, S. B. Park, K. H. Rho, H. S. Kim, K. R. Yu, S. H. Lee, J. W. Jung, Y. S. Lee and K. S. Kang. 2009. Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. J. Vet. Sci. 10:181-187.   DOI   ScienceOn
23 Vidal, M. A., G. E. Kilory, J. R. Johson, M. J. Lopez, R. M. Moore and J. M. Gimble. 2006. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet. Surg. 35:601-610.   DOI   ScienceOn
24 Sharp, J., J. Frame, M. Siegenthaler, G. Nistor and H. S. Keirstead. 2010. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152-163.
25 Vaags, A. K., S. Rosic-Kablar, C. J. Gartley, Y. Z. Zheng, A. Chesney, D. A. Villagomez, S. A. Kruth and M. R. Hough. 2009. Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential. Stem Cells 27:329-340.   DOI   ScienceOn
26 Varma, M. J., R. G. Breuls, T. E. Schouten, W. J. Jurgens, H. J. Bontkes, G. J. Schuurhuis, S. M. van Ham and F. J. van Milligen. 2007. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 16:91-104.   DOI   ScienceOn
27 Vieira, N. M., V. Brandalise, E. Zucconi, M. Secco, B. E. Strauss and M. Zatz. 2010. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant. 19:279-289.   DOI   ScienceOn
28 Wall., M. E., S. H. Bernacki and E. G. Loboa. 2007. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 13:1291-1298.   DOI   ScienceOn
29 Zaman, W. S., S. Makpol, S. Santhapan and K. H. Chua. 2008. Stemness gene expression profile of human adipose derived stem cells in long term culture. Med. J. Malaysia 63:61-62.
30 Zhao, Y., S. D. Waldman and L. E. Flynn. 2011. The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells. Cells Tissues Organs 195:414-427.
31 Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz and M. H. Hedrick. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211-228.   DOI   ScienceOn
32 Zheng, B., B. Cao, G. Li and J. Huard. 2006. Mouse adipose derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng. 12:1891-1901.   DOI   ScienceOn
33 Zucconi, E., N. M. Vieira, D. F. Bueno, M. Secco, T. Jazedje, C. E. Ambrosio, M. R. Passos-Bueno, M. A. Miglino and M. Zatz. 2010. Mesenchymal stem cells derived from canine umbilical cord vein-A novel source for cell therapy studies. Stem Cells Dev. 19:395-402.   DOI   ScienceOn