• Title/Summary/Keyword: Stem Factor

Search Result 618, Processing Time 0.027 seconds

Stem Effect Correction Factor of Ionization Chamber in Exposure Measurements of High Energy Photons (고 에너지 광자선의 조사선량 측정 시 전리함의 스템효과 보정계수)

  • Park, Cheol-Woo;Lee, Jae-Seung;Kweon, Dae-Chel;Cha, Dong-Soo;Kim, Jin-Soo;Kim, Kyoung-Keun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Ionization chambers often exhibit a stem effect, caused by interactions of radiation with air near the chamber end, or with dielectric in the chamber stem or cable. In this study measured stem effect correction factor for length of ionization chamber from medical linear accelerator recommend to with the use of stem correction method. For a model of the Farmer-type chamber, were used to calculate the beam quality correction factor. These interactions contribute to the apparent measured exposure. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field. Linear accelerator generated photons energy and increased dose repeatedly measured by using stem correction method. Stem effect was dependence of the energy and increases with photon energy conditions improved of beam quality. In conclusion, stem effect correction factor was measured within 0.4% calculated according to the exposures stem length and also supposed to determined below 1% of another stem correction method.

  • PDF

A Study for the Improvement Method of Flexible Wedge Gate Valve Operation Capability (Flexible Wedge Gate 밸브의 운전 성능향상 방안에 관한 연구)

  • Kim, Dae-Woong;Lee, Do-Hwan;Kang, Sin-Chul;Kim, In-Whan;Park, Sung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.644-651
    • /
    • 2001
  • The purpose of this study is to develop the improvement method of MOV(Motor Operated Valve) operability without major modification or change of MOV which needs a great expense and manpower. We studied valve stem lubrication, stem packing thrust and actuator control switch which could give an major effect to MOV operability, and found the some consequences. First, the stem/stem-nut friction coefficient and stem factor is significantly effected by stem lubrication state. Second, the measured packing thrust value is appeared higer than the design value for tested valves and the preparation of optimal value selection criteria is needed. Finally, optimization of MOV control switch is another major factor for MOV operability and structual integrity.

  • PDF

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon;Sim, Jiyeon;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.380-388
    • /
    • 2018
  • Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

A Method of ROL Improvement for the Motor Operated Gate Valve Operated in the High Differential Pressure Condition (고차압에서 운전되는 모터구동 게이트밸브의 부하율 향상 방안)

  • Kim, D.W.;Yoo, S.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.16-22
    • /
    • 2005
  • This paper presents the method of ROL(Rate Of Loading) improvement for the Motor Operated Gate Valve operated in high differential pressure condition. ROL is one of the most important evaluation parameters for the valve ability. It is close to correlation in stem factor (SF) and appears different value by the differential pressure of fluid. ROL and SF are analyzed by the static test and dynamic test. The obtained result show that the modification of stem factor is very important factor for the ROL improvement. In order to obtain the same value of SF between static and dynamic test, stem and stem nut should be combined appropriately by the repetition test.

A Method of ROL Improvement for the Motor Operated Gate Valve Operating in the High Differential Pressure Condition (고차압에서 운전되는 모터구동게이트밸브의 부하율 향상 방안)

  • Kim, D.W.;Park, S.G.;Hong, S.Y.;Yooh, S.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.562-567
    • /
    • 2003
  • This paper presents the method of Rate of Loading(ROL) improvement for the Motor Operated Gate Valve operating in high differential pressure condition. The character of ROL and Stem Factor is analyzed. Static test and dynamic test were performed and acquired the diagnosis signal for the valve closing stroke. The result of this study is the modification of stem factor is very important factor for the ROL improvement. In order to obtain the same value of dynamic test thread friction coefficient stem and stem nut should be combined appropriately.

  • PDF

Mast Cell Increase and Stem Cell Factor Receptor (c-kit) Expression in Helicobacter pylori-infected Gastritis (Helicobacter pylori 감염 위염에서의 비만세포 증가와 Stem Cell Factor Receptor (c-kit)의 발현)

  • Jekal, Seung-Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • It is known that mast cells (MCs) are increased in H. pylori-infected gastritis and its increase is mediated by stem cell factor (c-kit ligand). To determine the mechanism of mast cell recruitment and activation by stem cell factor, weinvestigated the expression of stem cell factor receptor (c-kit) in H. pylori-positive and -negative gastric mucosa. Biopsy specimens from 16 H. pylori-negative and 20 positive subjects were examined. H. pylori infection in gastric mucosa was examined by the Warthin-Starry method. MC and c-kit were identified by immunohistochemisty, using a monoclonal antihuman MC tryptase antibody and a polyclonal anti-human c-kit antibody. Densities of MC and c-kit positive cell were measured by a computerized image analysis system. MCs were detected in the lamina propria of both H. pylori-positive and -negative gastric mucosa. Densities of MC and c-kit positive cell were significantly greater in H. pylori-positive than -negative subjects. c-kit was located on the surface of MCs. These results indicate that stem cell factors may be one of the factors involved in mast cell increase and that they activate mast cells by binding with c-kit.

  • PDF

A Study on the Bounding Value of Valve Performance Parameters for Motor Operated Flexible Wedge Gate Valve (모터구동 Flexible Wedge형 게이트밸브의 밸브 성능인자 Bounding Value에 대한 연구)

  • Kim, Dae-Woong;Yoo, Seong-Yeon;Park, Sung-Keun;Lee, Do-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.46-53
    • /
    • 2007
  • Stem friction coefficient and valve factor are very important parameters for the evaluation of valve performance. In this study, the characteristics of stem friction coefficient and valve factor are analyzed, and thor bounding value is determined. The hydraulic testing is performed for many flexible wedge gate valves in the plant and statistical method is applied to the determination of bounding value. According to the results of this study, stem friction coefficient does not change much with differential pressure, and the bounding value of closing stroke is higher than that of opening stroke. The valve factor of valves with high differential pressure is higher than that of valves with medium differential pressure. It means valve factor is more sensitive to the differential pressure than the stem friction coefficient. Valve factor of the closing stroke is higher than that of opening stroke due to piston effect.

Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress

  • Chang Woo Chae;Young Hyun Jung;Ho Jae Han
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.727-735
    • /
    • 2023
  • Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

Inhibition of Stem Cell Factor- and Nerve Growth Factor-Induced Morphological Change by Wortmannin in Mast Cells

  • Kim, Hyung-Min;Moon, Young-Hoe;An, Nyun-Hyung
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.108-112
    • /
    • 1999
  • Recombinant murine stem cell factor (rmSCF) or recombinant murine nerve growth factor (rmNGF) induced the morphological change of large numbers of rat peritoneal mast cells (RPMC). We investigated the role of phosphatidylinositol $3^{l}-kinase$ (PI3-kinase) in receptors-mediated morphological change in RPMC. Exposure of RPMC to PI3-kinase inhibitor, wortmannin, before the addition of rmSCF and rmNGF antagonized those factors-induced morphological change. These results suggest that the PI3-kinase is involved in the signal transduction pathway responsible for morphological change following stimulation of rmSCF and rmNGF and that wortmannin blocks these responses.

  • PDF