• Title/Summary/Keyword: Steering effect

Search Result 152, Processing Time 0.018 seconds

The Study of Steering Effect in Multilayer Growth (두꺼운 박막 성장시 Steering 효과 연구)

  • Seo J.;Kim J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.410-420
    • /
    • 2006
  • The dynamic effects, such as the steering and the screening effects during deposition on an epitaxial growth is studied by kinetic Monte Carlo simulation. In the simulation, we incorporates molecular dynamic simulation to rigorously take the interaction of the deposited atom with the substrate atoms into account, We find three characteristic features of the surface morphology developed by grazing angle deposition: (1) enhanced surface roughness, (2) asymmetric mound, and (3) asymmetric slopes of mound sides, Regarding their dependence on both deposition angle and substrate temperature, a reasonable agreement of the simulated results with the previous experimental ones is found. The characteristic growth features by grazing angle deposition are mainly caused by the inhomogeneous deposition flux due to the steering and screening effects, where the steering effects play the major role rather than the screening effects. Newly observed in the present simulation is that the side of mound in each direction is composed of various facets instead of all being in one selected mound angle even if the slope selection is attained, and that the slope selection does not necessarily mean the facet selection.

An Evaluation on the Steering Stability of the Guideway Vehicle (안내궤도 차량의 조향 안정성 평가)

  • 윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.209-215
    • /
    • 2002
  • A study of the guideway vehicle was made for a comparison of ride stabilities between its two primary steering types; one is the front wheel steering and the other the front-rear wheel. A numerical model as a closed loop system was built for an investigation of various factors to have an influence on the vehicular critical speed which is closely associated with ridabilities. It was shown that dynamics stabilities of the front steering type was much better over a large value of steering gain and the longer distance between front axle and guide link for both types provided better stabilities as well. A large steering gain ratio of the front to the rear significantly plays an important role in an improvement of stability in the front-rear steering. To observe a qualitative trend on stability behaviors, the root locus was obtained by considering a time lag which may be frequently caused by the complicated steering mechanism. In performing so, the appropriate selection of steering gain had a greater effect on the front-rear steering vehicle far more ride comfort. In addition, the dynamics model proposed here can be utilized for a more accurate evaluation on the vehicle design in lateral or yawing absorber and moreover expanded for the analysis of independent four-wheel steering vehicle.

Effect of Design Parameters of Power Steering System for Passenger Cars on the Vehicle Steering Characteristic (승용차용 파워 스티어링 시스템의 설계변수 변화에 따른 차량의 조향특성 해석)

  • 황성호;김홍석;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1996
  • Power steering systems play an important role for the vehicle handling characteristics and driver's steering center feeling during straightforward driving situation. In this paper, the rotary valve, the main component of power steering systems, is modeled and analyzed, and is combined with a 3-DOF(degree of freedom) lateral dynamics model of passenger cars to examine the effects of design parameters on the vehicle steering characteristics. The results can be applied to the development of advanced power steering systems for passenger cars such as electronically-con-trolled power steering system.

  • PDF

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

The Effect of Ground Condition, Tire Inflation Pressure and Axle Load on Steering Torque (노면상태, 타이어 공기압 및 축하중이 조향력에 미치는 영향)

  • Park W. Y.;Kim S. Y.;Lee C. H.;Choi D. M;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.419-424
    • /
    • 2004
  • In this study, a series of soil bin experiment was carried out to investigate experimentally the effect of the tire inflation pressure and axle load of tire on the steering torque for the off-road condition. The experiment was performed at the three levels of off-road conditions(ground I, ground II and ground III) and on-road condition(ground IV), four levels of tire inflation pressure(120 kPa, 170 kPa, 220 kPa and 270 kPa), and four levels of axle load(1470N, 1960N, 2450N and 2940N). The results of this study are summarized as follows: 1. Steering torque at the off-road conditions were higher than that on the on-road conditions for all levels of tire inflation pressure and axle load. 2. As the axle load increased, steering torque also increased f3r all experimental ground conditions. 3. For the axle load of 1470N the biggest steering torque was measured on the ground condition I, but as the axle load increased to the value of 2940N the biggest steering torque was measured on the ground condition III. From the above results, it was found that for the low axle load, steering torque gets higher on the soft ground condition, but for the high axle load, steering torque gets higher on hard ground condition for whole range of experimental conditions. 4. As the tire inflation pressure decreased, steering torque increased on the on-road condition, but no specific trend was not found at the off-road conditions.

Optimum Design for Reducing Steering Error of Rack-and-Pinion Steering Linkage (랙-피니언 조향기구의 조향오차 최적설계)

  • 홍경진;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1998
  • This paper addresses an optimization for reducing a steering error of a rack-and-pinion steering linkage with a MacPherson strut independent front suspension system. The length, orientations and inner joint positions of a tie-rod are selected as design variables and Ackerman geonetry, understeer effect, minimum turn radius, wheel alignment and packaging are considered as design constraints. Nonlinear kinematic analysis of the steering system is performed for calculating the values of cost and constraints, and Augmented Lagrange Multiplier(ALM) method is used for solving the constrained optinization problem. The optimization results show that the steering error are considerably reduced while satisfying all the constraints.

  • PDF

Dynamic Analysis of Vehicle Steering System Including Gear Backlash (기어의 백래쉬를 고려한 승용차 조향계의 동특성 연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.40-49
    • /
    • 1996
  • The problem related to the rotational vibration at steering wheel end of passenger cars during high speed driving is investigated. to analyze vibration of steering wheel, a steering system of passenger car is modelled in twelve degrees of freedom including backlash effect of rack and pinion gear system. The one degree of freedom system with backlash in investigated by the analytical method. Consequently the skeleton curve and the frequency response curves are computed. The steering system is analyzed by the numerical simulation using the 4th order Runge-Kutta method, the obtained results are compared with the experimental data. Also the effects of the change of rack gear tooth stiffness and backlash on the acceleration level of steering wheel are investigated. As a result, it can be found that the acceleration level of steering wheel becames lower as the rack gear tooth stiffness becames higher, and that acceleration level becames high as the magnitude of backlash between rack and pinion gear increase.

  • PDF

The Optimization Study on the Test Method of Remanufactured Power Steering Oil Pump by Using FMEA (FMEA를 활용한 재제조 파워스티어링 오일펌프 시험법에 대한 최적화 연구)

  • Seo, Youngkyo;Jung, Dohyun;Yu, Sangseok;Rha, Wanyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.90-98
    • /
    • 2016
  • Currently government certified test method for an automobile remanufactured products is insufficient. Thus many automotive parts in the remanufacturing market are lacking proper evaluation criteria and production of defective products are causing customer dissatisfaction. In this paper a power steering oil pump, which requires stringent manufacturing standards, is studied by the failure mode and effect analysis approach. The research suggested that the test criteria such as discharge flow characteristic test, tightness test, pulley run-out test, pressure switch operation test, low temperature test and rotation pressure durability test should be performed to evaluate the reliability of remanufactured power steering oil pumps. As a result of tests, the performance of remanufactured power steering oil pump satisfied the evaluation criteria of pressure switch operation test and low temperature test. However, the remanufactured power steering oil pump failed to satisfy the evaluation criteria on discharge performance test, tightness test and pulley run-out test. These performance evaluation tests proved the necessity of standard process for the remanufactured power steering oil pump.

DEVELOPMENT OF THE INDEPENDENT-TYPE STEER-BY-WIRE SYSTEM USING HILS

  • Jo, H.Y.;Lee, U.K.;Kam, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.321-327
    • /
    • 2006
  • The previous paper described the logic tuning, the vehicle manufacture and the evaluation in the HILS system for the purpose of the development of a Steer-By-Wire(SBW) system. This paper describes the content of applying to a new HILS system, the vehicle manufacture and the result of the evaluation performed in Independent-type SBW(I-SBW) system. Here, the SBW indicates the method of steering both tires by using one motor as the steering gear actuator, similar to the conventional steering system. On the other hand, the I-SBW means the method of steering both front tires independently by using dual motors as the steering gear actuator. As a result, the layout and the kinematical mechanism of the I-SBW system are quite different from those of the typical steering mechanism. Nevertheless, there is no change in the steering column motor system. In the report, we first describe the structure and control logic of the I-SBW system, and then the control effect on this system as applied for both the HILS system and a vehicle. Furthermore, our HILS system involves the actuator mechanism which realizes the reaction force of the road surface with a minimized frictional force in operation. Therefore, it is possible for us to tune the control logic via the HILS system and confirm the effect of the tuned control logic by applying it to a vehicle with the I-SBW system.

Effects of Ground Surface Condition on Steering Force for Tractors with Electronic Power Steering System (노면상태가 전동조향식 트랙터 조향력에 미치는 영향)

  • Lee S. S.;Lee K. S.;Park W. Y.;Kim S. Y.;Lee J. Y.;Mun J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.327-332
    • /
    • 2005
  • In this study, the electronic power steering control system was developed and it was carried out to investigate experimentally the effect of the steering force for the on-road and off-road. The electronic power steering control system was engineered new trend system of power steering control system for tractor. It was composed of the electronic controller, detector, motor and mechanism mounted on tractor chassis. It was tested at the field in condition of tractor traveling speed 0 km/h, 3 km/h, 8 km/h, 11 km/h, 15 km/h, 18 km/h, 22 km/h, 25 km/h for measuring a maximum steering force. As a speed of tractor increased, a steering force decreased regardless of on-road or off-road. In addition, it is sufficiently a possibility of application of the steering system of tractor.