• Title/Summary/Keyword: Steering Torque

Search Result 154, Processing Time 0.023 seconds

Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor (후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소)

  • Taehyun Kim;Daekyu Hwang;Bongsang Kim;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

Development of the 80-kW Test Tractor for Load Measurement of Agricultural Operations (농작업 부하 계측을 위한 80kW급 계측 트랙터 개발 및 검증)

  • Cho, Seung-Je;Kim, Jeong-Gil;Park, Jin-Sun;Kim, Yeon-Soo;Lee, Dongkeun
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.46-53
    • /
    • 2022
  • RIn this study, a test tractor that could measure various types of agricultural operational loads was developed, and its performance was verified. This tractor could be used to measure the load generated during agricultural work and convert the related data into a database. A test tractor was developed using an 80-kW-rated load tractor, and it could measure various types of field test data, such as engine torque and rpm, wheel torque, PTO(power take-off) torque, hexometer, IMU/INS sensor, steering angle sensor, hydraulic pressure, and flow sensor data. To verify the developed test tractor, a verification test using an agriculture rotavator was performed. The test conditions were L1, L2, and L3 based on the tractor's main and sub-transmission stages, and stages 1 and 2 were selected as the PTO. In a comparison of the analyzed test data, similar tendencies in the test results of this research and other research (Kim's research) were seen. Through this, the developed test tractor was verified. In the future, we plan to conduct research on the tractor developed in this study using various attached working machines.

Tire and Vehicle Pull I-Experimental Results (타이어와 차량 쏠림 I-시험결과)

  • 이정환;이주완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.194-201
    • /
    • 2000
  • It is called vehicle pull when a vehicle drifts in the lateral direction under the straight-ahead motion with no steering or external input. Recently vehicle pull draws attention as one of the critical evaluation items from the customers on the vehicle quality. It is generally recognized that the vehicle pull is complex phenomena due to internal and external factors. In this paper the relations between vehicle pull and ire were investigated through close survey on the road test results from the final inspection of car manufactures. Through this investigation the factors are identified which play an important role in causing vehicle pull problem.

  • PDF

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

Magnetic Circuit Design of BLDC Motor Using Response Surface Methodology (반응표면방법론을 이용한 BLDC 전동기의 자기회로 설계)

  • Lim, Yang-Soo;Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.904-906
    • /
    • 2001
  • This paper presents a magnetic circuit design procedure by using Response Surface Methodology(RSM) to determine initial and detail design parameters for reducing torque ripple in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variable Moreover, Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

  • PDF

Recent Trends in Ferrous PM Materials in Japan

  • Takajo, Shigeaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.4-4
    • /
    • 1993
  • Ferrous powder metallurgy in Japan has developed in the last four decades, where every decade is featured by certain breakthroughs in materials. The progress in PM materials is closely related to newly developed powders. Low alloy steel powders for high strength PM components are grouped into three types: Ni and/or Mo containing completely alloyed powders, Ni containing partially alloyed powders, and Cr containing completely alloyed powders. Every type has its special characteristics. The tensile strength of PM materials is improved up to 2 GPa. The hardness is also increased to exceed 500 HV with normal hardening methods, and 700 HV with novel surface treatment techniques. The present maximum of fatigue strength is 550 MPa, and that of impact energy is 100 J. Novel PM materials with improved properties are applied to a variety of automobile and other components: power steering pumps, rocker anns, valve guides and inserts, bearings, torque sensors, etc. The future outlook for the ferrous PM is Quite positive, and the industry is expected to show renewed growth by applying many types of alloy steel powders and new ferrous PM materials.

  • PDF

Design of Vehicle Motor for EPS considering Cogging Torque (코깅토크를 고려한 자동차 EPS용 전동기 설계)

  • Kim, Chang-Ki;Lee, Sang-Gon;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.9-11
    • /
    • 2009
  • 자동차 EPS(Electric Power Steering)용 소용량 표면부착형 영구자석 동기전동기(SPMSM : Surface mounted Permanent Magnet Synchronous Motor)의 설계에는 주로 토크리플 및 코깅토크 저감이 설계목표로 결정되는데, 토크리플과 코깅토크는 치폭, 요크폭, 자석 극호각 등 전동기 형상에 영향을 많이 받는다. 특히, 자석 극호각에 따라 변동이 극심한데, 이는 출력특성이 공극 자속밀도 변화량에 크게 의존하기 때문이다. 한편, 일반적으로 토크리플과 코깅토크의 최소점은 각각 다르기 때문에, 소용량 SPMSM 설계시 큰 어려움으로 작용한다. 따라서 본 논문은 이러한 현상을 효과적으로 고려한 소용량 SPMSM 최적설계를 목적으로 하며, 600W급 고전압 EPS용 전동기 설계를 통해 연구의 타당성을 검증한다.

  • PDF

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

Optimum Design and Performance Characteristics Analysis of BLDC Motors for EPS (EPS용 BLDC 전동기의 최적 설계 및 성능 특성 해석)

  • Kim, Byung-Kuk;Hwang, Dong-Won;Jo, Won-Young;Jung, Gun-Seok;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1183-1185
    • /
    • 2005
  • This paper describes the optimal design and performance characteristics of the BLDC Motor for Electrical Power Steering System. To develope the optimal dimension within a given volume, BLDC Motor with the low cogging torque is designed and analyzed by FEM analysis. The prototype BLDC Motor has 4 poles rotor and 24 slots stator. To estimate the prototype machine, this paper gives the comparison between the FEM results and the experiment ones.

  • PDF

Agile Attitude Control of Small Satellite using 5Nm Small CMG (5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어)

  • Rhee, Seung-Wu;Seo, Hyun-Ho;Yoon, Hyung-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.952-960
    • /
    • 2018
  • Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.