• Title/Summary/Keyword: Steering PID control

Search Result 61, Processing Time 0.022 seconds

Implementation of an Auto-Steering System for Recreational Marine Crafts Using Android Platform and NMEA Network

  • Beirami, Mohammadamin;Lee, Hee Yong;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.577-585
    • /
    • 2015
  • This paper deals with development of an autopilot system for leisure yacht based on NMEA 2000 network and android platform. The developed system can operate both for manual steering and automatic navigation mode. In automatic steering mode, after manipulation of commands which are NMEA 0183 sentences by android platform, the developed system translates and sends the packets through NMEA 2000 network. Then the controller which is connected to NMEA 2000 network receives the commands and controls the boat's rudder system automatically. The automatic steering mode is achieved by cooperation of two controllers; one for controlling the rudder system, and the other for controlling the vessel's heading. To control the vessel's rudder and heading angle two PID controllers are developed with an adjustable dead-band gain. Also, in order to eliminate the steady-state error occurred by applying dead-band, an integral controller which specifically supervises the system's behavior inside the dead-band area is developed. In this paper, at the first stage, simulations are accomplished using computer in order to examine the feasibility of the proposed based on simulation results. In the next step, the system on a real hydraulic steering model is implemented and at the end the performance examination by implementing it on a real boat and doing test navigation is executed.

Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning (이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어)

  • Park, Sang-Hyuk;Choi, Won-Hyuck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • Researching and developing mobile robot are quite important. Autonomous driving of mobile robot is important in various working environment. For its autonomous driving, mobile robot detects obstacles and avoids them. Purpose of this thesis is to analyze kinematics model of the mobile robot and show the efficiency of type-2 fuzzy self-tuning PID controller used for controling steering angle. Type-2 fuzzy is more flexible in verbal expression than type-1 fuzzy because it has multiple values unlike previous one. To compare these two controllers, this paper conduct a simulation by using MATLAB Simulink. The result shows the capability of type-2 fuzzy self-tuning PID is effective.

Development of Steering Control Algorithms for All-terrain Crane and Performance Verification Based on Real-time Co-simulation (전지형 크레인 조향제어 알고리즘 개발 및 연성해석 기반의 성능평가)

  • Seo, Jaho;Lee, Geun Ho;Oh, Kwangseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.367-374
    • /
    • 2017
  • The goal of this study was to develop control algorithms to improve the steering performance of a 120-ton all-terrain crane. To accomplish this, a hydraulic steering system for the crane was modeled using AMESim software, and a PID steering control algorithm was designed in the MATLAB/Simulink environment. The performance of the designed controller was verified through multiphysics co-simulations based on a real-time simulator.

A Design of Two Degree of Freedom PID Controller for AGV using Immune Algorithm (면역 알고리즘을 이용한 AGV의 2자유도 PID조향 제어기 설계에 관한 연구)

  • 이창훈;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.229-234
    • /
    • 2002
  • Immune system is an evolutionary biological system to protect Innumerable foreign materials such as virus, germ cell, and et cetera. Immune algorithm is the modeling of this system'response that has adaptation and reliableness when disturbance occur. In this paper, immune algorithm controller was proposed to control four wheels steering(4ws) Automated Guided vehicle(AGV) in container yard. And then the simulation result was analysed and compared with the results of NN-PID controller.

  • PDF

Design of Balancing Robot Controller using Optimal Control Method (최적제어 기법을 이용한 밸런싱 로봇 제어기의 설계)

  • Yeo, Hee-Joo;Park, Hun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.190-196
    • /
    • 2014
  • In this paper, we get state equations based on wheel's rotation, tilt and steering are independent each other in balancing robot. Accordingly, we propose two LQR controllers which are appropriate for rotation and steering control of a balancing robot. And its superiority and appropriateness are demonstrated by a comparison to a PID method. Simulation results verify the possibility of upright balancing, rectilinear motion and position control. Moreover, experimental results show that it guarantees the performance to apply the two LQR controllers to balance the robot.

Development of Steering Control System based on CAN for Autonomous Tractor System (자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발)

  • Seo, Dong-Hyun;Seo, Il-Hwan;Chung, Sun-Ok;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.

A Comparative Study on Guidance Systems for Ship's Track-Keeping (선박의 항로추종 유도기법에 관한 비교 연구)

  • Xu, Zhizun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.308-309
    • /
    • 2016
  • This paper deals with ship's track keeping methods which is crucial part of automatic navigation control systems. In this paper, we mainly discuss the performance of different guidance methods including way point guidance, enclosure-based steering guidance and lookahead-based steering guidance system. As a controller, a PID control system is employed to control ship's rudder angle during track-keeping. Finally, the performance of three methods are discussed through some simulation results.

  • PDF

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.

A Study on UCT Automatic Steering Control using TDOF PID Controller (2자유도 PID 제어기를 이용한 UCT의 조향제어에 관한 연구)

  • Son, Ju-Han;Lee, Young-Jin;Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Man-Hyeung;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.972-975
    • /
    • 1999
  • Until now, all of the port goods are transported by container transporter driven manually but recently there are a lot of researches about unmanned vehicle driven automatically. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control steering system. We used the ES and SA algorithms to construct hybrid tuning algorithm. Then the computer simulation shows that our proposed controller has better Performances than the other one.

  • PDF

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.