DOI QR코드

DOI QR Code

Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning

이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어

  • 박상혁 (한서대학교 항공시스템공학과) ;
  • 최원혁 (한서대학교 항공시스템공학과) ;
  • 지민석 (한서대학교 항공시스템공학과)
  • Received : 2016.04.25
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

Researching and developing mobile robot are quite important. Autonomous driving of mobile robot is important in various working environment. For its autonomous driving, mobile robot detects obstacles and avoids them. Purpose of this thesis is to analyze kinematics model of the mobile robot and show the efficiency of type-2 fuzzy self-tuning PID controller used for controling steering angle. Type-2 fuzzy is more flexible in verbal expression than type-1 fuzzy because it has multiple values unlike previous one. To compare these two controllers, this paper conduct a simulation by using MATLAB Simulink. The result shows the capability of type-2 fuzzy self-tuning PID is effective.

이동로봇의 제어는 로봇 분야에 있어 중요한 이슈이다. 이동로봇의 자율주행은 다양한 작업 환경에서 중시되고 있다. 자율 주행을 위해 이동로봇은 장애물을 감지, 회피하며 지능시스템을 도입한 제어 방식들을 사용해 충돌회피의 성능을 보완하는 연구가 활발히 진행되고 있다. 본 논문에서는 이동 로봇의 기구학적 모델을 분석하고 조향각 제어를 위한 type-2 fuzzy self-tuning PID 제어기를 설계하였다. Type-2 fuzzy 제어기는 type-1 fuzzy 제어기와 달리 복수 개의 값을 가지므로 언어표현의 모호함의 자유도가 높다. 본 논문에서는 설계된 제어기와 기존의 PID 제어기, type-1 fuzzy self-tuning PID 제어기를 비교하기 위한 방법으로 MATLAB Simulink를 사용하여 시뮬레이션을 하였다. 시뮬레이션 비교 결과 기존의 PID제어기와 type-1 fuzzy self-tuning PID 제어기의 성능보다 type-2 fuzzy self-tuning PID 제어기의 성능이 우수하다는 것을 확인하였다.

Keywords

References

  1. A. A. Pervozvanski and L. B. Freidovich, "Robust stabilization of robotic manipulators by PID controllers," Dynamics and Control, Vol. 9, No. 3, pp. 203-222, 1993.
  2. S. Bentalba, A. El Hajjaji and A. Rachid, "Fuzzy control of a mobile robot: a new approach," IEEE Transactions on Control Applications, Vol. 1, No. 3, pp. 69-72, 1997.
  3. C. D. Jung, J. Mook, Kang and C. H. Park, "Study of engine oil replacement time estimate method using fuzzy and neural network algorithm in ubiquitous environment," International Journal of Control and Automation (IJCA), Vol. 6, pp. 267-280, 2013. https://doi.org/10.14257/ijca.2013.6.6.26
  4. Q. Xu, J. Kan, S. Chen and S. Yan, "Fuzzy PID based trajectory tracking control of mobile robot and its simulation in simulink," International Journal of Control and Automation (IJCA), Vol. 7, pp. 233-244, 2014.
  5. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A stable tracking control method for an autonomous mobile robot," in Proceeding. of IEEE International. Conference. on Robotics and Automation, Cincinnati: OH, pp. 384-389, 1990.
  6. L. A. Zadeh, "Fuzzy sets," Information and Control, Vol. 8, pp. 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  7. B. J. Choi and S. Kim, "Design of simple-structured fuzzy logic system based driving controller for mobile robot," Korean Institute of Intelligent Systems, Vol. 22, No. 1, pp. 1-6, 2012. https://doi.org/10.5391/JKIIS.2012.22.1.1
  8. P. Corke, Robotics Vision and Control Fundamental Algorithms in MATLAB, Berlin: Germany, Springer-Verlag, 2011.
  9. J. P. Laumond, P. E. Jacobs, M. Taix and R. M. Murry, "A motion planner for nonholonomic mobile robots," IEEE Transaction on Robotics and Automation, Vol. 10, No. 5, pp. 557-593, 1994.
  10. S. Thongchai and K. Kawamura, "Application of fuzzy control to a sonar-based obstacle avoidance mobile robot," in Proceeding. of IEEE International. Conference. on Robotics and Automation on Control Applications, Anchorage: AL, pp. 425-430, 2000.

Cited by

  1. Constant Force PID Control for Robotic Manipulator Based on Fuzzy Neural Network Algorithm vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/3491845
  2. Linear algebra-based controller for trajectory tracking in mobile robots with additive uncertainties estimation vol.37, pp.2, 2016, https://doi.org/10.1093/imamci/dnz016