• 제목/요약/키워드: Steering Angle Control

검색결과 248건 처리시간 0.027초

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

비포장 노면 주행을 위한 스케이트보드의 조향제어기구 설계 (Design of a Steering Control Mechanism for a Skateboard on Off-road Driving)

  • 심한섭
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.110-115
    • /
    • 2005
  • Driving performance is affected by a steering mechanism and characteristics of the ground at off-road skateboarding. In order to drive on off-road, it is necessary off-road wheel and high performance steering mechanism to adapt on various configuration of the ground. In this paper, design factors are studied to affect to steering radius such as inclination angle of a king-bolt, distance of a wheel axle, and rolling angle of a deck plate. A steering system is adhered to inclination face of the deck plate. And, inclination angle is existed between the king-bolt and the flat face of the deck plate. Therefore, the wheel axle of the steering system can be steered by control of the rolling angle of the deck plate.

외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발 (Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

라인 트레이스 차량을 위한 퍼지 제어기의 설계 (Design of a Fuzzy Controller for a Line Trace Vehicle)

  • 김광백;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2289-2294
    • /
    • 2009
  • 이 논문에서는 라인 트레이스 차량의 주행 제어를 위한 퍼지 제어기를 설계하였다. 라인을 감지하는 센서들의 감지 상태에 따라 센서값을 산출하고 이 센서값은 조향각 제어 퍼지 추론 규칙의 입력으로 사용되어 조향각을 제어값으로 산출한다. 또한 산출된 조향각은 다시 모터속력 제어 추론 퍼지 규칙의 입력으로 사용되어 주행 속도 결정을 위한 모터속력을 제어값으로 산출하게 된다. 제안한 퍼지 제어 기법을 이용하여 조향각만을 제어한 경우와 조향각과 모터속력을 함께 제어한 경우를 각각 실험한 결과, 모터속력을 함께 제어한 경우가 트랙을 이탈하지 않으면서 더욱 빠르게 주행하여 제안한 기법에 더욱 효과적임을 알 수 있었다.

자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기 (Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System)

  • 유준영;김원희;손영섭;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

A Study on the Dynamic Analysis and Control Algorithm for a Motor Driven Power Steering System

  • Yun, Seokchan;Han, Changsoo;Wuh, Durkhyun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.155-164
    • /
    • 2002
  • The power steering system for vehicles is becoming essential for supporting the steering efforts of the drivers, especially for the parking lot maneuver Although hydraulic power steering has been widely used for years, its efficiency is not high enough. The problems associated with a hydraulic howe. steering system can be solved by a motor driven power steering (MDPS) system. In this study, a dynamic model and a control algorithm for the ball screw type of MDPS system have been derived and analyzed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, two derivative gains are added to the conventional power boosting control algorithm. Through simulations, the effects of the control gain on the steering angle gain were verified in the frequency domain. The steering returnability and steering torque phase lag in on-center handling test were also evaluated in the time domain.

전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발 (Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

Ball screw형 전동식 동력 조향 장치의 제어에 관한 연구 (A Study on the Control Algorithm for a Ball Screw Type of Motor Driven Power Steering System)

  • 윤석찬;왕영용;한창수
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.124-134
    • /
    • 2000
  • The power wteering system for automobiles is becoming core popular for supporting steering efforts of the drivers, especially for a parking lot maneuver. Though hydraulic power steering has been widely used for a long time, the efficiency of that is not high enough. The motor driven power steering system can solve the problems associated with the hydraulic power steering system. In this study, dynamic model and control algorithm of the ball screw type of MDPS systenem have been derived and analysed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, the additional scheme is proposed to the conventional power boosting control algorithm. Through simulations, control gain effects to the steering angle gain in the frequency domain were verified. The steering returnability and steering torque phase lag in on-center handing test were performed also.

  • PDF

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

후륜 조향각 결정을 통한 통합 섀시 제어기의 성능 향상 (Performance Improvement of Integrated Chassis Control with Determination of Rear Wheel Steering Angle)

  • 임성진
    • 대한기계학회논문집A
    • /
    • 제41권2호
    • /
    • pp.111-119
    • /
    • 2017
  • 본 논문은 자세 제어 장치(ESC)와 후륜 조향 장치(RWS)를 장착한 통합 섀시 제어기의 성능을 향상시키기 위해 후륜 조향각을 결정하는 방법을 제안한다. 차량을 안정화시키기 위해 필요한 제어 요 모멘트는 자세 제어 장치와 후륜 조향 장치를 이용하여 만들어진다. 각 장치의 타이어 힘을 결정하기 위해 의사역행렬 제어할당 방법을 적용한다. 제어기의 성능을 향상시키기 위해 후륜 조향 장치의 조향각을 결정하는 데에 네 가지 방법을 적용한다. 차량 시뮬레이션 패키지인 CarSim에서 시뮬레이션을 수행하여 제안된 방법들이 통합 섀시 제어기의 성능을 향상시킬 수 있음을 검증한다.