• Title/Summary/Keyword: Steepest Descent Method

Search Result 119, Processing Time 0.027 seconds

Design of Lyapunov Theory based State Feedback Controller for Time-Delay Systems (시간지연 시스템을 위한 리아푸노브 이론 기반 상태 피드백 제어기 설계)

  • Cho, Hyun Cheol;Shin, Chan Bai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.95-100
    • /
    • 2013
  • This paper presents a new state feedback control approach for communication networks based control systems in which control input and output observation time-delay natures are generally occurred in practice. We first establish a generic state feedback control framework based on well-known linear system theory. A maximum time-delay value which allows critical stability of whole control system are defined to make a positive definite Lyapunov function which is mathematically composed of controlled system states. We analytically derive its control parameters by using a steepest descent optimization method in order to guarantee a stability condition through Lyapunov theory. Computer simulation is numerically carried out for demonstrating reliability of the proposed NCS algorithm and a comparative study is accomplished to prove its superiority for which the traditional control approach for NCS is made use of under same simulation scenarios.

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

An Optimum Choice of Approximation Path for Derivation of New Class of Closed-Form Green's Functions (새로운 형태의 Closed-Form 그린함수의 유도를 위한 근사 경로의 최적선택)

  • Lee Young-Soon;Kim Eui-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.418-426
    • /
    • 2005
  • Based upon three level approximation and the steepest descent path(SDP) method, we consider an optimum choice of approximation path for derivation of new class of closed-flrm Green's functions which can lead to the analytic evaluation of MoM(Method of Moment) matrix elements. It is observed that the present method can give more accurate evaluation of the spatial Green's functions than the previous method, even without the advance investigation of the spectral functions, over a wide frequency range. In order to check the validity of the present method, some numerical results are presented.

Reverberator Design by Measured Room Impulse Response Signal Modeling (측정된 실내 충격 응답 신호 모델링에 의한 잔향 필터 설계)

  • 안상태
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.3.2-6
    • /
    • 1998
  • 본 논문에서는 실측된 실내 충격 응답을 모델링하여 실내 잔향 필터 설계를 시도하였다. 급강하법(steepest descent method)을 이용하여 측정된 실내 충격 응답을 4개의 콤 필터(comb filter)와 2개의 올패스 필터(allpass filter)로 이루어진 잔향 필터로 모델링하여, 잔향 필터의 계수를 결정하였다.

  • PDF

Scattering of arbitrarily large targets above a ground using steepest descent path integration (최대경사 적분법을 이용한 지면위 큰 대형 표적의 산란 특성)

  • Lee, Seung-Hak;Kim, Che-Young;Lee, Chang-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.38-45
    • /
    • 2002
  • This paper derives the electric field integral equation to calculate scattering from arbitrary large target above and radiating of an electric line source within a lossy ground. Sommerfeld’s type integral requires a lot of time to calculate and has some difficulties and limitations for an analysis region. But SDP (steepest descent path) integration gives fast calculation of the integral, and the result shows that SDP integration has the validity for all over the analysis region with fast evaluation. Moment method with SDP integration is used to calculate the scattering of an arbitrary large conducting target and the results are compared with that of the numerical integration with Gaussian quadrature rule and GPOF (generalized pencil of function) method.

3D traveltime calculation considering seismic velocity anisotropy (탄성파 속도 이방성을 고려한 3차원 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF

A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System (SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계)

  • Joo, Sok-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a self tuning fuzzy controller for a synchronous generator excitation and SVC system. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method.

A Study on the Fast Converging Algorithm for LMS Adaptive Filter Design (LMS 적응 필터 설계를 위한 고속 수렴 알고리즘에 관한 연구)

  • 신연기;이종각
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 1982
  • In general the design methods of adaptive filter are divided into two categories, one is based upon the local parameter optimization theory and the other is based upon stability theory. Among the various design techniques, the LMS algorithm by steepest-descent method which is based upon local parameter optimization theory is used widely. In designing the adaptive filter, the most important factor is the convergence rate of the algorithm. In this paper a new algorithm is proposed to improve the convergence rate of adaptive firter compared with the commonly used LMS algorithm. The faster convergence rate is obtained by adjusting the adaptation gain of LMS algorithm. And various aspects of improvement of the adaptive filter characteristics are discussed in detail.

  • PDF