• Title/Summary/Keyword: Steel-plate reinforcement

Search Result 188, Processing Time 0.03 seconds

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S.;Ibraheem, Omer F.;Raoof, Saad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.587-594
    • /
    • 2022
  • Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.

Evaluation of Shear Capacity of Wide Beam Reinforced with Shear Plates with Openings (유공형 판으로 전단보강된 넓은 보의 전단거동 평가)

  • Ko, Myung Joon;Lee, Young Hak;Kim, Min Sook;Park, Jong Yil;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.667-674
    • /
    • 2015
  • In this paper, shear behavior of concrete wide beam reinforced with plates with openings was evaluated. For this evaluation, evelen specimens were manufactured. One specimen was non-shear reinforced, five specimens were reinforced with steel plates and the other five specimens were reinforced GFRP plates. Shear strengths measured through experiments were compared with ones calculated from the equation provided by ACI 318. Longitudinal spacing of shear reinforcement, transverse spacing of shear reinforcement and shear reinforcement material were considered as variables. Test results showed that the shear strength increased as the transverse and longitudinal spacing of shear reinforcement became narrow. Also, regardless of material type of shear reinforcement, the shear capacity was similar when the amount of shear reinforcement was the same.

A Study of continuous PSC bridge with a reinforcement steel plate (보강강판을 이용한 연속 PSC 교량 공법에 관한 연구)

  • Koo Min-Se;Kim Hun-Hee;Jung Young-Do
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.422-429
    • /
    • 2005
  • It is limited to decrease height or section even by system conversion to indeterminate structure - continuous beam - in existing PSC girder bridges. In this study, the movement of connection is analyzed through actual field test, by increasing stiffness of negative moment area in continuous PSC bridge and developing continuous PSC bridge with embedded steel plate, that can overcome the demerit of existing connection. As a result, it is confirmed that the body unification of the connection is being realized and maintained. Moreover, the height of a span is suggested in continuous PSC girder bridge with embedded steel plate by computational analysis

  • PDF

Analytical Study on Strength Resistance of Steel Beams with Stiffened Ends by Reinforced Concrete -difference of behavior with fixing plate- (복합보의 내력성능에 관한 연구 -정착판의 설치에 의한 거동의 차이-)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.681-690
    • /
    • 2000
  • Recently, a long span is often required for the spacious building. Therefore the increase of stiffness is necessary to prevent floor vibration and control deformation of the building under earthquake and wind loads. For this purpose, steel beams with stiffened ends by reinforced concrete are effective. To realize such an effective reinforcement method, the smoothening of bending and shear stress transmission at the boundaries between middle-part of the steel beam and both end-parts of the steel beam with stiffened ends by reinforced concrete is required. Therefore, the fixed plate was installed at the boundary with the view of transferring the stress smoothly. This paper evaluates the method of effective transmission of bending and shear stress through the numerical analysis that is based on advanced experimental tests.

  • PDF

A study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 연구)

  • Choi Jung-Youl;Park Yong-Gul;Byun Jong Gul
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1034-1039
    • /
    • 2004
  • The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external prestressing method. It analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite clement analysis for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external prestressing method are obviously effective for the additional dead force which is ballast. The analytical study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. To develop two type FEM model which reflect well the post-tension force transverse distribution behavior of servicing bridge. With the comparing the results of railway bridge with ballast which carried out before the post-tensioning with the results of railway bridge with ballast which carried out after post-tensioning, It is investigated that the additional dead load decrease effect and bending behavior of servicing bridge is effect by the post-tensioning. The reinforcement by using the external tendon can be reducing that structure of a degradation phenomenon by unusual stresses due to additional dead load and other problems.

  • PDF

An Experimental Study on Structural Performance of H-Steel or SRC Column and Flat Plate Slab Connection (플랫 플레이트 슬래브와 H형강 기둥 접합부의 구조 성능에 관한 실험적 연구)

  • Yoon, Myung-Ho;Lee, Yoon-Hee;Ryu, Hong-Sik;Kim, Jin-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2014
  • Main topics in this study is a new structural detail for connection between H-Steel or SRC column and flat plate slab. We carried out to evaluate the punching shear performance of H-steel or SRC column + RC slab system for vertical load and lateral load. From the test results structural characteristics - yield moment, yield rotation, maximum moment, deformation capabilities ect. - are obtained and evaluated. In this paper as a shear reinforcement for supporting region of plate closed stirrup type and shear band are used, and their test results are compared.

An Experimental Assessment on the Structural Behavior of Bolt Connected Deep Corrugated Steel Plate (볼트이음된 대골형 파형강판의 구조거동에 대한 실험적 평가)

  • Oh, Hong Seob;Lee, Ju Won;Jun, Beong Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Deep corrugated steel plate structure has more compressive force and flexibility in bending behavior than short span structure. Asymmetric earth pressure distribution has occurred during construction. Ultimate strength and moment in domestic area, having superior ability at bending strain has been examined in this study. Based on the result of the study preceded, performance of Deep corrugated steel plate specimen has been evaluated by comparing increase of strength according to the increase of reinforcement content in bolt connections and failure mode of specimen.

Punching Shear Performance Evaluation of Foundation by Enforcement-length of Shear Head Reinforcement (전단 보강재의 보강길이에 따른 기초판의 뚫림전단 성능평가)

  • Lee, Yong-Jae;Yi, Waon-Ho;Yang, Won-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.60-68
    • /
    • 2017
  • This study was made to examine the motion characteristics according to the reinforcement of the reinforcement length and stiffener reinforcement for shear reinforcement to the foundation structure reinforced with shear reinforcement steel plate. Experimental study was made after specimen was installed on the ground as the same as in the practical site. Reinforcement lengths of the steel for shear reinforcement are divided into 1,000 mm, 1,200 mm and 1,400 mm in the specimen and as for reinforcement method of the stiffener, 4 stiffeners with interval of 100mm reinforced with the same materials as the shear reinforcement were manufactured for the experiment. Considering result of the experiment, it is expressed that no effect of the stiffener reinforcement was found and regarding the reinforcement length of shear reinforcement material the crossed point of the two converted lines of the value that the shear force is expressed in the bearing power in the expanded dangerous section and the value that the shear capacity receivable by the reinforcement materials in the dangerous section is proposed as effective reinforcement length.

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.