Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.5.587

Effect of thickness and reinforcement on concrete plates under high speed projectiles  

Tais, Abdalla S. (Department of Civil Engineering, University of Tikrit)
Ibraheem, Omer F. (Department of Civil Engineering, University of Tikrit)
Raoof, Saad M. (Department of Civil Engineering, University of Tikrit)
Publication Information
Structural Engineering and Mechanics / v.82, no.5, 2022 , pp. 587-594 More about this Journal
Abstract
Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.
Keywords
bullet; concrete plate; crater; high-speed projectile; penetration;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Wen, H.M., Yang, Y. and He, T. (2010), "Effects of abrasion on the penetration of ogive-nosed into concrete targets", Lat. Am. J. Solid. Struct., 7, 413-422. http://doi.org/10.1590/S1679-78252010000400003.   DOI
2 Zhang, S., Wu, H., Zhang, X., Liu, J. and Huang, F. (2017), "High-velocity penetration of concrete targets with three types of projectiles: experiments and analysis", Lat. Am. J. Solid. Struct., 14, 1614-1628. http://doi.org/10.1590/1679-78253753.   DOI
3 Ansari, M. and Chakrabartia, A. (2016), "Behaviour of GFRP composite plate under ballistic impact: Experimental and FE analyses", Struct. Eng. Mech., 60(5), 829. http://doi.org/10.12989/sem.2016.60.5.829.   DOI
4 Dancygier, A.N. (2009), "Characteristics of high performance reinforced concrete barriers that resist non-deforming projectile impact", Struct. Eng. Mech., 32(5), 685. http://doi.org/10.12989/sem.2009.32.5.685.   DOI
5 Forrestal, M.J., Frew, D.J. and Hanchak, S.J. (1996), "Penetration of grout and concrete targets with ogive-nose steel projectiles", Int. J. Impact Eng., 18(5), 465-476. https://doi.org/10.1016/0734-743X(95)00048-F.   DOI
6 Gulkan, P. and Korucu, H. (2011), "High-velocity impact of large caliber tungsten projectiles on ordinary portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part I: numerical simulation and validation", Struct. Eng. Mech., 40(5), 595-615. http://doi.org/10.12989/sem.2011.40.5.595.   DOI
7 Jankowiak, T., Rusinek, A., Kpenyigba, K.M. and Pesci, R. (2014), "Ballistic behavior of steel sheet subjected to impact and perforation", Steel Compos. Struct., 16(6), 595. http://doi.org/10.12989/scs.2014.16.6.595.   DOI
8 Latif, Q.B., Abdul Rahman, I. and Zaidi, A.M. (2012b), Impact Energy of Hard Projectile for Local Damage of Concrete Slab: Penetration, Scabbing and Perforation of Concrete Slab-Impact Engineering, LAP LAMBERT Academic Publishing.
9 Poyer, J. (2006), The AK-47 and AK-74 Kalashnikov Rifles and their Variations: A Shooter's and Collector's Guide, North Cape Publications, P.8.
10 Siddiqui, N.A., Khateeb, B.M.A., Almusallam, T.H. (2014), "Reliability of double-wall containment against the impact of hard projectiles", Nucl. Eng., 270, 143-151. https://doi.org/10.1016/j.nucengdes.2014.01.003.   DOI
11 Kravanja, S., Sovjak, R., Konrad, P. and Zatloukal, J. (2017), "Penetration resistance of semi-infinite UHPFRC targets with various fiber volume fractions against projectile impact", Procedia Eng., 193, 112-119. https://doi.org/10.1016/j.proeng.2017.06.193.   DOI
12 Dancygier, A.N., Yankelevsky, D.Z. and Jaegermann, C. (2007), "Response of high performance concrete plates to impact of non-deforming projectiles", Int. J. Impact Eng., 34, 1768-1779. http://doi.org/10.1016/j.ijimpeng.2006.09.094.   DOI
13 Das, R. and Cleary, P.W. (2015), "Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact", Comput. Concrete, 16(6), 933. http://doi.org/10.12989/cac.2015.16.6.933.   DOI
14 Frew, D.J., Forrestal, M.J. and Cargile, J.D. (2006), "The effect of concrete target diameter on projectile deceleration and penetration depth", Int. J. Impact Eng., 32, 584-1594. https://doi.org/10.1016/j.ijimpeng.2005.01.012.   DOI
15 He, L.L., Chen, X.W. and Xia, Y.M. (2014), "Representation of nose blunting of projectile into concrete target and two reduction suggestions", Int. J. Impact Eng., 74, 132-144. https://doi.org/10.1016/j.ijimpeng.2014.06.007.   DOI
16 Heckotter, C. and Sievers, J. (2013), "Simulation of impact tests with hard, soft and liquid filled missiles on reinforced concrete structures", J. Appl. Mech., 80(3), 031805. https://doi.org/10.1115/1.4023391.   DOI
17 Rosenberg, Z. and Dekel, E. (2009), "On the deep penetration and plate perforation by rigid projectiles", Int. J. Solid. Struct., 46, 4169-4180. https://doi.org/10.1016/j.ijsolstr.2009.07.027.   DOI
18 Jhung, M.J. and Jeong, K.H. (2015), "Modal characteristics of partially perforated rectangular plate with triangular penetration pattern", Struct. Eng. Mech., 55(3), 583. https://doi.org/10.12989/sem.2015.55.3.583.   DOI
19 Liu, H.F. and Ning, J.G. (2009), "Mechanical behavior of reinforced concrete subjected to impact loading", Mech. Mater., 41, 1298-1308. https://doi.org/10.1016/j.mechmat.2009.05.008.   DOI
20 Pavlovic, A., Fragassa, C. and Disic, A. (2017), "Comparative numerical and experimental study of projectile impact on reinforced concrete", Compos. B. Eng., 108, 122-130. https://doi.org/10.1016/j.compositesb.2016.09.059.   DOI
21 Shan, Y., Huang, F.L. and Wu, H.J. (2014), "The influence of projectile material on mass abrasion of high-velocity penetrator", Proceedings of the 28th International Symposium on Ballistics, Atlanta.
22 Sovjak, R., Shanbhag, D., Konrad, P. and Zatloukal, J. (2017), "Response of thin UHPFRC targets with various fibre volume fractions to deformable projectile impact", Procedia Eng., 193, 3-10. https://doi.org/10.1016/j.proeng.2017.06.179.   DOI
23 Zhao, X.X., Bao, M.A. and Hua, W.Z. (2018), "A theoretical model of rigid projectile perforation of concrete slabs using the energy method", Sci. China Technol. Sci., 61(5), 699-710. https://doi.org/10.1007/s11431-017-9183-1.   DOI
24 Abadel, A., Abbas, H., Almusallam, T., Alsalloum, Y. and Siddiqui, N. (2017), "Local impact damage response of CFRP strengthened concrete slabs", Procedia Eng., 173, 85-92. https://doi.org/10.1016/j.proeng.2016.12.047.   DOI
25 Sovjak, R., Vavrinik, T., Maca, P., Zatloukal, J., Konvalinka, P. and Song, Y. (2013), "Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact", Procedia Eng., 65, 120-125. http://doi.org/10.1016/j.proeng.2013.09.021.   DOI
26 Sun, W. and Yuan, J. (2012), "Penetration deep of non-deformable projectile into concrete targets", Adv. Mater. Res., 446, 3604-3608. https://doi.org/10.4028/www.scientific.net/AMR.446-449.3604.   DOI
27 Gomes, J.T. and Shukla, A. (2001), "Multiple impact penetration of semi-infinite concrete", Int. J. Impact Eng., 25, 965-979. https://doi.org/10.1016/S0734-743X(01)00029-X.   DOI
28 ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
29 Chen, C., Zhu, X., Hou, H., Zhang, L., Shen, X. and Tang, T. (2014), "An experimental study on the ballistic performance of FRP-steel plates completely penetrated by a hemispherical-nosed projectile", Steel Compos. Struct., 16(3), 269. http://doi.org/10.12989/scs.2014.16.3.269.   DOI
30 Chen, X.W., Fan, S.C. and Li, Q.M. (2004), "Oblique and normal perforation of concrete targets by a rigid projectile", Int. J. Impact Eng., 30, 617-637. http://doi.org/10.1016/j.ijimpeng.2003.08.003.   DOI