DOI QR코드

DOI QR Code

Punching Shear Performance Evaluation of Foundation by Enforcement-length of Shear Head Reinforcement

전단 보강재의 보강길이에 따른 기초판의 뚫림전단 성능평가

  • Received : 2016.11.02
  • Accepted : 2017.01.16
  • Published : 2017.03.01

Abstract

This study was made to examine the motion characteristics according to the reinforcement of the reinforcement length and stiffener reinforcement for shear reinforcement to the foundation structure reinforced with shear reinforcement steel plate. Experimental study was made after specimen was installed on the ground as the same as in the practical site. Reinforcement lengths of the steel for shear reinforcement are divided into 1,000 mm, 1,200 mm and 1,400 mm in the specimen and as for reinforcement method of the stiffener, 4 stiffeners with interval of 100mm reinforced with the same materials as the shear reinforcement were manufactured for the experiment. Considering result of the experiment, it is expressed that no effect of the stiffener reinforcement was found and regarding the reinforcement length of shear reinforcement material the crossed point of the two converted lines of the value that the shear force is expressed in the bearing power in the expanded dangerous section and the value that the shear capacity receivable by the reinforcement materials in the dangerous section is proposed as effective reinforcement length.

본 연구에서는 지내력이 기초판에 미치는 영향을 충분히 고려할 수 있도록 현장여건과 동일한 옥외의 지반에서 실험할 수 있는 시스템을 구축하였으며, 대상 실험체는 경제성 및 시공성 향상을 위하여 강판을 "ㄷ"자형으로 절곡하여 단면 2차모멘트를 극대화 하고 현장조립이 가능하도록 제안 하였다. 대상 실험체는 무보강 실험체 1개, 강판 두께를 동일하게 하여 보강 길이를 달리한 실험체 3개, 강판 두께를 달리하고 위험단면 부근에 스티프너 보강한 실험체 2개 총 6개의 실험체를 대상으로 비교 검토 한다. 실험 결과 스티프너 보강에 의한 효과는 없는 것으로 나타났으며, 전단보강재의 보강길이는 확장된 위험단면에서 전단력을 지내력으로 나타낸 값과 위험단면에서 보강재가 받을 수 있는 전단내력을 지내력으로 환산여하여 두 선의 교차점을 유효보강 길이로 산정하는 강판두께별 유효보강길이 산정방법을 제안하였다.

Keywords

References

  1. ACI 318-11, Building Code Requirements for Structural Concrete(ACI 318-11) and Commentary, American Concrete Institute.
  2. Corley, W. G., and Hawkins, N. M. (1968), Shearhead Reinforcement for Slabs, ACI Structural Journal, 811-824.
  3. Heffer, J., Alaa G., Sherif, and Ricker, M. (2006), Experimental Investigations on Punching Behavior of Reinforced Concrete Footings, ACI Structural Journal, 604-613.
  4. Heffer, J., Ricker, M., and Alaa G. and Sherif (2009), Punching Strength of Reinforced Concrete Footings, ACI Structural Journal, 706-716.
  5. Lee, Y. J., Yang, W. J., and Yi, W. H. (2013), "The Evaluation Bases Steel for Shear Reinforcement", Journal of The Architectural Institute of Korea Structure & Construction, AIK., 29(3), 65-72. https://doi.org/10.5659/JAIK_SC.2013.29.3.65
  6. Lee, Y. J., Yi, W. H., and Yang, W. J. (2014), Punching Shear Performance Evaluation of Foundation by Depth-thickness Ratio of Shear Head Reinforcement The Evaluation Bases Steel for Shear Reinforcement, Journal of The Architectural Institute of Korea Structure & Construction, AIK., 30(3), 73-80. https://doi.org/10.5659/JAIK_SC.2014.30.3.073
  7. Yang, W. J., Yi, W. H., and Lee, Y. J. (2012), Performance Evaluation of Shear Reinforced Concrete Footings on the Ground, Journal of The Architectural Institute of Korea Structure & Construction, AIK., 28(9), 41-48. https://doi.org/10.5659/JAIK_SC.2012.28.9.41