• Title/Summary/Keyword: Steel-frame work

Search Result 92, Processing Time 0.018 seconds

Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column (Form-LPSRC 기둥 개발 및 적용 연구)

  • Baek, Hojin;Lee, Seung-Hwan;Kim, Sooyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • Shortening the construction duration of structural frame work is extremely important because the work accounts for a major percentage of all cost and duration in large projects. For this reason, new construction methods to reduce the duration of structural frame work are being continuously studied and developed. A PSRC composite column, which uses steel angles instead of H-beams, has the advantages of flexural strength and ductility. Moreover, with this PSRC technique, conventional work for reinforcing bars in columns in practice can be skipped. However, one limitation exists in which the form work is still required. This research proposes a Form-LPSRC column method that is prefabricated with the column frame that includes permanent forms attached. Feasibility was examined with mock-up specimens and finally, the technique applied to real practice. Compared to the conventional SRC column method, this study demonstrated that the proposed technique has many advantages in construction duration, cost, quality, safety and environment.

Analysis of Progress Schedule and Delay Element of Frame Works in Apartments (아파트 구체공사의 공정관리 및 공기지연요소 분석에 관한 연구)

  • 최은준;최민권;조형근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.157-160
    • /
    • 2003
  • In order to reduce the construction cost and period without degrading the quality, construction companies are making a lot of efforts to prefabricate and mechanize the construction process, and introducing and utilizing various techniques of construction time management in the process of construction. However, due to the various factors (such as weather conditions, labor factors, supply of equipment and materials, safety accident, etc) in the process of construction, construction projects are not frequently completed within the scheduled Period. This research is to examine the current status of construction time management and factors causing delay in construction with regard to the concrete work (such as form work, steel reinforcement, and concrete work) in building apartments.

  • PDF

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

Design of lightweight mansard portal frames

  • Morales-Rodriguez, P.A.;Lopez-Perales, J.A.;Moreno, M.C. Serna
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 2017
  • Single-storey industrial buildings are one of the most often type of structures built among various skeletal framed steel constructions. These metallic buildings offer an exceptional opportunity to minimise the material employed, contributing to a more sustainable construction. In particular, the mansard portal frame is a typology made up of broken beams that involves different lengths and discontinuous slopes. This study aims the weight reduction of the standard mansard portal frame with design purposes by means of varying four parameters: the kink position, the eaves-apex slope, the span and the columns height. In this work, we suggest some guidelines that can improve the economical competitive capabilities of their structural design. In all the cases analysed, the joints of the portal frame are placed over the theoretical non-funicular shape to uniform loads. This allows reducing the bending moment and the shear force, but increasing the axial force. In addition, the performance of mansard and typical pitched portal frames submitted to the same boundary conditions is compared in terms of efficiency in the use of steel. In the large majority of the cases, mansard typologies are lighter than the common pitched frames and, hence, more economical.

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Process Analysis & Evaluation for Steel Frame Fabrication Automation (철골조립공사 자동화를 위한 프로세스 분석 및 평가)

  • Kim, Baek-Joong;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.155-158
    • /
    • 2007
  • The construction industry kept lower level of the technology and productivity improvement than any other kinds of industry. But in most analysis of previous construction work which promoted the productivity of construction, the analysis process has only developed by the economical efficiency or the time studies through work sampling in construction field, So We suggest motion analysis as a tool to solve these problems. Spacially, this study find out productivity improvement method of steel frame fabrication works with using motion analysis. If the result of this study were to be applied to the actual construction field, it will be of great help for Building Construction Automation.

  • PDF

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

A Study on the Accident Analysis of Architectural Work (건축건설공사의 재해분석에 관한 연구)

  • Kim, Jeongmin;Lee, Jong-Bin;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.96-101
    • /
    • 2016
  • Previous literature has been investigated various aspects of accident occurrence and prevention in construction field. However, those studied were limited in that they only focused on the death accident without considering the loss time accident. Based on this, the goal of current study was to investigate the nature of the loss time accident, and compare the results with the death accident. Results showed that 1) the occurrence rate of death accident was significantly higher in the form work, temporary work, and steel frame work; 2) the temporary work showed significantly higher occurrence rate of the loss time accident and the death accident as compared to others; 3) ratio of the loss time accident to the death accident in domestic construction field was 50:1; 4) fall accident showed biggest occurrence rate in both the loss time accident and the death accident; and 5) more that 80% of workers in both the loss time accident and the death accident was between 41 and 65 years old.