• 제목/요약/키워드: Steel truss

검색결과 400건 처리시간 0.03초

H형강을 사용한 합성트러스의 합성효과 (The Composite Action of Composite Truss Using H-Shaped Section Steel)

  • 이명재
    • 한국강구조학회 논문집
    • /
    • 제21권6호
    • /
    • pp.637-646
    • /
    • 2009
  • 바닥슬래브가 있는 경우 국내에서 설계되는 트러스보는 바닥 슬래브와의 합성효과를 고려하지 않고 있다. 이 연구에서는 상하현재를 H형강으로 구성한 합성트러스를 사용하여 기본적인 실험을 수행하였다. 실험에서는 합성트러스의 역학적 거동을 조사하기 위하여 전단연결재의 유무에 따른 영향을 검토하였다. 실험체로서는 철골트러스, 비합성 및 합성트러스 등으로 이루어지며 가력방법으로는 중앙집중재하와 균등휨의 두가지 방법을 사용하였다. 시어 커넥터를 사용한 합성트러스의 합성효과가 실험적으로 확인되어졌다.

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

Bending Properties of Parallel Chord Truss with Steel-Web Members

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권3호
    • /
    • pp.197-206
    • /
    • 2023
  • A truss is a structure in which the members are connected and arranged such that they are primarily subjected to axial loading. A truss has the advantage that it can be used for a longer span because the structure distributes the applied force to its members well, and the load is transmitted only in the axial direction of the members. Trusses manufactured using timber have more advantages than those made of other materials. In this study, the properties of parallel chord trusses composed of timber chord and steel-web members were evaluated. We constructed truss specimens with various lengths by using upper and lower chords of 2 × 4 inch spruce-pine-fir lumber and steel-web members manufactured by S and P companies. The specimens were tested in accordance with KS F 2150. The test results showed that the load at the deflection limit and the deflection limit itself increased from L/180 to L/360 regardless of the length of the specimens. For specimens of the same length, the load at the deflection limit increased as the height of the parallel timber chord truss specimens increased from 200 to 300 mm. Successive installations of the steel-web members (SST) showed almost 2 times the load at each deflection limit compared to that of SAT specimens (alternate installation of the steel-web members). When comparing the three load-deflection limits in terms of the manufacturer of the steel-web members, the load at each deflection limit for SST specimens was higher than that for PST specimens.

냉간성형강 평트러스 시스템의 좌굴 거동에 관한 실험 연구 (Experimental Study on the Buckling Behavior of Cold-formed Steel Warren Truss)

  • 박완순;김갑득
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.747-754
    • /
    • 2002
  • 기존 바닥조이스트의 문제점을 해결하기 위해 냉간성형강 평트러스 시스템에 대한 연구를 진행하였다. 냉간성형강 평트러스 시스템은 기존 스틸 조이스트 시스템과 유사한 구조형식을 취하고 있으며, 무게 대비 성능이 우수하고, 설비라인을 바닥 구조재와 동일 선상에 배치할 수 있다는 장점을 가지고 있다. 본 연구에서는 Square End Type(SE Type), Underslung Type(EE Type) 평트러스의 구조적 거동에 대한 분석과 더불어, AISI 설계기준을 토대로 평트러스의 설계하중에 대한 평가가 진행되었다. 그리고 휨 실험을 통해 평트러스의 좌굴 거동에 대한 조사를 진행하였다. 실험결과 SE Type 평트러스가 EE Type 평트러스 보다 집중하중에 유리한 것으로 확인되었으며, 약축방향에 대한 비보강길이가 평트러스의 성능에 중요한 영향을 미치는 것으로 분석되었다. 그리고 실험을 통해 측정된 평트러스의 좌굴하중은 AISI 설계기준 값을 충족시키는 것으로 확인되었다.

조적공사 인방보용 강재트러스 구조물에 관한 실험적 연구 - 아파트 기준층 문틀 상단 인방재를 중심으로 - (Experimental Study on Steel Truss Structure for Safety Lintel in Masonry Construction -Focusing on Door Frame Top Lintel at Typical Floor Apartment-)

  • 김영춘;유현동;최우종;정상무;강경식
    • 대한안전경영과학회지
    • /
    • 제15권3호
    • /
    • pp.29-35
    • /
    • 2013
  • The research is to verify by experiments whether the steel truss structure is able to withstand the load of cement bricks of upper part of a door for the safe use of lightweight steel truss structure instead of concrete lintel which is to be installed at upper part of door frame in building cement bricks for apartment construction. The steel truss is designed in order not to disturb bricks-building and the shape of structure was verified by bending test. According to experiments result, camber was applied to steel structure that enabled construction work to be improved and was proved effective for the prevention of accidents by cement bricks-building load test.

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구 (Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam)

  • 오명호;김영호;김명한
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

철골 트러스 구조의 자동화 최적설계 (The automated optimum design of steel truss structures)

  • 편해완;김용주;김수원;강문명
    • 한국공간구조학회논문집
    • /
    • 제1권1호
    • /
    • pp.143-155
    • /
    • 2001
  • Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.

  • PDF

경량형강 지붕트러스 앵커부의 거동 (The Behavior of Anchor Connections of Cold-Formed Steel Roof Truss)

  • 권영봉;강승원;정현석;최영현
    • 한국강구조학회 논문집
    • /
    • 제15권5호통권66호
    • /
    • pp.519-529
    • /
    • 2003
  • 최근에 스틸하우스나 고층아파트 지붕에 경량형강 지붕트러스의 사용이 증가하는 추세이다. 그러나 현재 지붕트러스와 하부구조의 앵커 접합부의 설계는 거의 경험에 의존하는 실정이다. 본 논문에서는 냉간성형형강 지붕트러스 앵커 접합부의 구조적인 거동에 관한 실험적인 연구를 서술하였다. 트러스부재와 접합철물은 스크류로 접합하였으며, 하부구조의 구조재료에 따라 시공성 및 구조적인 성능이 우수한 단순한 형태의 접합철물을 사용하여 철근콘크리트구조인 경우 케미컬 앵커볼트 그리고 강구조인 경우는 용접 및 DX-Pin을 사용하여 하부구조와 연결하였다. 다양한 접합부 형태에 대한 인발실험을 수향하여 접합부의 강도 및 강성을 측정하였으며, 이를 AISI시방서(1996) AISC시방서(1989)규정에 근거한 설계강도와 비교하였다. 또한 스크류 연결부의 최대전단강도식을 제안하여 실험결과와 비교하였다.

Experimental investigation on strength of CFRST composite truss girder

  • Yinping Ma;Yongjian Liu;Kun Wang
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.667-679
    • /
    • 2023
  • Concrete filled rectangular steel tubular (CFRST) composite truss girder is composed of the CFRST truss and concrete slab. The failure mechanism of the girder was different under bending and shear failure modes. The bending and shear strength of the girder were investigated experimentally. The influences of composite effect and shear to span ratio on failure modes of the girder was studied. Results indicated that the top chord and the joint of the truss were strengthened by the composited effect. The failure modes of the specimens were changed from the joint on top chord to the bottom chord. However, the composite effect had limited effect on the failure modes of the girder with small shear to span ratio. The concrete slab and top chord can be regarded as the composite top chord. In this case, the axial force distribution of the girder was close to the pin-jointed truss model. An approach of strength prediction was proposed which can take the composite effect and shear to span ratio into account. The approach gave accurate predictions on the strength of CFRST composite truss girder under different bending and shear failure modes.