• Title/Summary/Keyword: Steel pipe

검색결과 1,030건 처리시간 0.026초

지역난방용 Flexible Pipe 활용방안 연구 (A Study on the Application Method of Flexible Pipe for District Heating in Korea)

  • 이기섭;박남수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.637-642
    • /
    • 2008
  • The concept of district heating involves centralised heat production where heat is distributed to consumer via a piping network. The objective of this work is to identify the Flexible Pipe from an economy, execution, maintenance point of view. Flexible Pipe has in some countries, especially in Europe, been used for many years in district heating. In spite of years of experience, there still exist doubts about the possibilities of using flexible pipes in district heating applications, mostly because of no experiences in domestic market. The advantage of flexible pipe systems is their flexibility. This holds not only for the inner pipe but also for the total pipe system including insulation and jacket. Even for the largest diameter the minimum radius of curvature is given to 1.5m. The most important difference between flexible pipe systems and preinsulated steel pipes is their simple and quick assembly. Such information could provide a basis for making reasonable hypotheses about consumer preferences, to foam a basis for making future marketing more effective.

  • PDF

탄소강관의 ERW 용접부 홈부식 손상에 관한 연구 (A Study on Grooving Corrosion at the Weld of a Low Carbon Steel Pipe Made by Electrical Resistance Welding)

  • 김용;이보영
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.58-64
    • /
    • 2004
  • Although leakage at a low carbon steel pipe made by electrical resistance welding (ERW) was reported due to grooving corrosion, the cause for the corrosion has not yet been cleared. In order to clarify the main cause, failure analysis on the leaked pipe was carried out, followed by metallographic investigation and corrosion test for the various ERW pipe made with different welding heat input. The microstructure, particularly inclusion content, of the weldment is dependant on the welding heat input applied. For an improper low heat input, the amount of inclusion at the weld was high. High inclusion content accelerated grooving corrosion at the weld. It is therefore that welding heat input should be controlled based on the carbon content of the pipe in order to improve the corrosion resistance of the ERW pipe.

Strengthening of steel hollow pipe sections subjected to transverse loads using CFRP

  • Narmashiri, Kambiz;Mehramiz, Ghadir
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.163-173
    • /
    • 2016
  • Nowadays using Carbon Fiber Reinforced Polymer (CFRP) has been expanded in strengthening steel structures. Given that few studies have taken about strengthening of steel hollow pipe sections using CFRP, in present study, the effects of CFRP sheets using two layers as well as in combination with additional reinforcing strips has been assessment. Strengthening of five specimens was carried out in laboratory tests. As well as numerical simulation was performed for all specimens by Finite Element Method (FEM) using ABAQUS software and high correlation between the results of numerical models with experimental data indicate the power of FEM in this field. The results of both laboratory and simulated specimens showed that load-bearing capacity of circular cross-sections can be significantly increased using CFRP retrofitting technique. Also, application of additional CFRP reinforcing strips and layers caused more strength for the strengthened specimens.

중성자 회절법에 의한 316L 스테인리스강 배관 다층용접부의 잔류응력 해석 (Analysis of Residual Stresses for the Multipass Welds of 316L Stainless Steel Pipe by Neutron Diffraction Method)

  • 김석훈;이재한
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.64-70
    • /
    • 2003
  • Multipass welds of the 316L stainless steel have been widely employed in the pipes of Liquid Metal Reactor. Owing to localized heating and subsequent rapid cooling by the welding process, the residual stress arises in the weld of the pipe. In this study, the residual stresses in the 316L stainless steel pipe welds were calculated by the finite element method using ANSYS code. Also, the residual stresses both on the surface and in the interior of the thickness were measured by HRPD(High Resolution Powder Diffractometer) instrumented in HANARO Reactor. The experimental data and the calculated results were compared and the characteristics of the distribution of the residual stress discussed.

Burst capacity of pipe under corrosion defects and repaired with thermosetting liner

  • Akram, Ali;Mustaffa, Zahiraniza;Albarody, Thar M. Badri
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.171-186
    • /
    • 2020
  • This paper aims at providing insights on the use of thermosetting liner for the repair of offshore pipelines exposed to corrosion and leakage. The work which covers both experimental and numerical approaches were aspired due to the high cost of repair for pipelines, limitations of thermoplastic material and limited study of reinforced thermosetting liner. The experiment involves a destruction test called the burst test, carried out on an API 5L X42 carbon steel pipe under four case studies, namely (i) intact pipe, (ii) pipe with corrosion defect, (iii) pipe with corrosion defect and repaired with thermosetting liner and (iv) pipe with leakage and repaired with thermosetting liner. The numerical simulation was developed to first validate the experimental results and later to optimize the design of the thermosetting liner in terms of the number of layers required to restore the original strength of the pipe. The burst test shows an improvement in 23% of the burst capacity for the pipe with corrosion defects, after being repaired with a three-layer thermosetting liner. The parametric studies conducted showed that with an addition of thermosetting layers, the burst capacity improves by an average of 1.85 MPa. In conclusions, the improvement in strength can be further increased with increasing thickness of the thermosetting liner. The thermosetting liner was also determined to fail first inside the host pipe.

재사용 V4 강재 파이프 서포트의 성능향상 요인에 관한 실험적 연구 (A Experimental Study on Performance Improvement Factors of Used V4 Steel Pipe Support)

  • 최명기;박종근
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.43-48
    • /
    • 2020
  • It is considered that most of reusable pipe supports, which are used as formwork support posting at construction sites, do not meet the performance standard. Due to the use of reusable pipe supports that do not meet such performance standard the potential risk of collapse accident is increasing. Therefore, this study identifies the status of compliance with performance standard, and presents the requirements for improving quality control to prevent the collapse of pipe supports reused at the construction site. First, if the female thread of the product with no clearance and new support pin with the diameter of 12mm are replaced at the same time for use, it is considered that the performance will be improved. Second, as the quality performance during use can be improved in the case of larger thickness of inner diameter compared to the case of larger thickness of outer diameter, it is necessary to increase the inner pipe thickness greatly than the current thickness. Based on the results of this study, it is expected that the performance the reusable pipe support (V4) can be improved, if the diameter of the support pin is 12mm, the female thread has a small clearance, and the inner tube thickness is 2.3 ~ 2.7mm. In addition, it is considered that other performance improvement factors included in the study results could be used as important data for improving the performance of reusable pipe support.

고강도 API 강의 바우싱거 효과에 미치는 V, Cu의 영향 (The influence of V, Cu on the Bauschinger effect in API steel)

  • 박재신;김대우;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.336-339
    • /
    • 2005
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depend on the competition of the Bauschinger effect and work hardening. So, the purpose of this study is to investigate the influence on the Bauschinger effect for API steel by addition of V and Cu which are formed the precipitations for higher strength in API steel. The results are that the addition of V considered as a ferrite stabilizer and Cu considered as a austenite stabilizer decreases and increases the Bauschinger effect for API steel respectively.

  • PDF