• Title/Summary/Keyword: Steel girder bridge

Search Result 601, Processing Time 0.026 seconds

A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment (실물실험을 통한 PC-Slab합성 판형교의 성능비교연구)

  • Min, Kyung-Ju;Lee, Sung-Uk;Kim, Yung-Guk;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF

Safety Evaluation of 40m Combined Modular Bridge Super-Structures Based on Transportation Lifting Methods (40m 조합모듈교량 상부구조 이송에 따른 안전성 검토)

  • Park, Sung-Min;Jung, Woo-Young
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • The purpose of this study was the analytical safety evaluation on the super-structure of precast modular bridge using standardized modular members and robotic construction during the transportation routing and lifting conditions. In order to evaluate the safety performance of the bridge system, 3-D full scale Finite Element (FE) of 40 m standardized modular block was developed in ABAQUS, followed by the analytical study to classify the structural system according to steel girder structures: 1) modular bridge block lifting method including the steel girder system; 2) modular bridge block lifting method without the steel girder system. The results from the analytical study revealed that the maximum stress of each modular member was within the maximum allowable stresses during lifting condition. However, the stress concentration at the connected area was more critical in comparison to the behavior of 40 m combined modular blocks during lifting time

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

A Study on the Behavior of Cross Beams in Two-I girder steel bridges (2개의 거더가 적용된 강플레이트 거더교의 가로보 거동에 관한 연구)

  • Kyung, Kab Soo;Kwon, Soon Chole;Park, Kyung Jin;Jeon, Jun Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.523-532
    • /
    • 2006
  • It is thought that the suggestion of efficient and rational design guideline based on the behavior evaluation of bridge structure system the included cross beam is necessary for the construction efficiency of two-I girder steel bridges. Therefore, in this study, the effects of influence parameters are investigated by the behavior analyses of the bridges, in which the influence parameters are location, spacing and rigidity of the cross beam. For this study, the existed two-I girder steel bridges firstly were selected with the model of case study and the FE analyses for some case models were performed to estimate the action of the cross beam in the bridge. From the analyses, it was estimated that if it consider local stress and load distribution of a floor system, shell and solid elements are compatible to modeling of the cross beams. Also, the efficient design guideline for the cross beam of two-I girder steel bridge was suggested from parameter studies used location, spacing and rigidity of the cross beam.

Automated Optimum Design Program for Steel Box Girder Bridges (강상자형교의 자동화 최적설계 프로그램)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.475-485
    • /
    • 2000
  • In this study, an automated optimum design program for steel box girder bridges has been developed for the optimum design of composite steel box girder bridges. The design constraints required for the optimum design of steel box girder bridges are based on the Korean standard bridge specification. Considering characteristics of steel box girder bridges, several approximation techniques, such as artificial constraint deletion, variable linking and stress reanalysis technique etc. are also introduced to enhance the efficiency of optimization. The developed program is mainly composed of major sub-system modules including structural analysis module using commercial structural analysis program such as RM-SPACEFRAME, optimum design module, pre-process module for friendly user input, and post-processor module for office automation. In addition, in order to demonstrate the efficiency and applicability of the developed optimum design program for steel box girder bridges, a few numerical examples are applied. Based on the results of the application, it may be stated that the automatic optimum design program developed in this study can be a prototype model for the developement of optimum design program for other type of bridge.

  • PDF

IFC Property Set-based Approach for Generating Semantic Information of Steel Box Girder Bridge Components (IFC Property Set을 활용한 강박스교 구성요소의 의미정보 생성)

  • Lee, Sang-Ho;Park, Sang Il;Park, Kun-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.687-697
    • /
    • 2014
  • This study ranges from planning phase to the detailed design phase of steel box girder bridge and proposes ways to generate semantic information of components through Industry Foundation Classes (IFC), a data model for Building Information Modeling (BIM). The classification of components of steel box girder bridge was performed to define information items required for identifying semantic information based on IFC, and spatial information items based on topology and physical information items based on functions of components were classified to create additional properties that does not support IFC by applying user-defined property set within the IFC framework. Steel box girder bridge information model based on IFC was implemented through BIM software and semantic information input interface, which was developed in this study to examine the effectiveness of the additionally created user-defined property. Furthermore, the quantity take-off of components was performed through information model of steel box girder bridge, and the applicability of the proposed method was tested by comparing the quantity take-off based on design document with the result.

Experimental Study on Dynamic Responses of Plate-Girder Bridges under Moving Loads (이동하중을 받는 판형교의 동적 거동에 대한 실험적 연구)

  • Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.407-416
    • /
    • 2000
  • This paper presents the dynamical responses of the plate girder bridge subjected to moving load by experimental method. The upper slab of the plate girder bridges is modelled to the plate element and the girder to the beam element. The small-scaled vehicle model is manufactured as moving load and the acryl-bridge model as the plate-girder bridge. The dynamic responses of the plate-girder bridges under the moving load are obtained by the strain gauges, displacement measurements, accelerometer, and dynamic strain measurement. The maximum dynamic responses from the measured data are compared with those from the finite element method. The experimental model test can be used to obtain to the dynamic responses of the plate-girder bridges.

  • PDF

Evaluation of Effective Temperature for Estimate Design Thermal Loads in Steel Deck of Steel Box Girder Bridges (강상자형교의 강바닥판에서 설계온도하중을 위한 유효온도 산정)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Choi, Chul-Ho;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.77-87
    • /
    • 2013
  • A present LSD (limited state design) code for temperature load in the domestic bridge design has applied a uniform standard for various bridge types. In this study, in order to calculate the effective temperature, a specimen of steel box girder bridge section with real size dimension was manufactured. For a year, the temperature data were measured at the 18 point in steel deck of steel box girder bridges specimen. Effective temperature within the cross section according to atmospheric temperature was calculated by this experiment data. The analyzed results were very similar correlation when compared with the effective temperature of the Euro Code. Therefore, the effective temperature which calculated based on the present data could be used as the basic data in order to present to the appropriate design criteria for the thermal loads on the domestic bridge design.

An Experimental Study for the Application of Steel Anchorage Zone in Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 강재 정착부 적용을 위한 실험적 고찰)

  • Kim, Jung-Ho;Lee, Sang-Yoon;Hwang, Yoon-Gook;Park, Kyung-Hoon;Oh, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.455-458
    • /
    • 2005
  • The Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which maximizes structural advantages of components (concrete, steel plate and tendon) and can be used to construct the middle or long span bridge with low-height girder. And recently, a continuous beam type of SCP Girder has been being developed to decrease size and self weight of girder in comparison with a simply-supported type. In this study, as part of developing the continuous beam type of SCP Girder, a new type of anchorage zone is proposed in order to address tendons effectively and decrease section size of SCP Girder efficiently. And also, the experimental test was carried out using a real scale specimen to examine the behavior of proposed anchorage zone.

  • PDF

Fatigue Assessment of Steel Railway Bridge by Service Loading about 65 Years

  • Hong, Sung-Wook;Chai, Won-Kyu;Lee, Myeong-Gu
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In this study, a series of random field test and dynamic analysis in the time domain were carried out in order to find in the reason of fatigue damage of the main and the secondary members in the 3-span continuous steel plate girder railway bridge being under in service over 60 years. From the measured and the analyzed results, the stress distribution patterns were investigated for the members with fatigue damage. In addition, global and local numerical stress analysis was performed for the members damaged severely by corrosion, to estimate variation of the distribution by corrosion. Finally, a reasonable cut-off ratio in the steel plate railway bridge will be proposed by analyzing the equivalent stress ranges according the ratio.