• 제목/요약/키워드: Steel fiber reinforced concrete

검색결과 1,088건 처리시간 0.025초

강섬유 보강 철근 콘크리트 단순보와 연속보의 거동 (The Behavior between Steel fiber Reinforced Concrete Both Simple and Continuous Beams)

  • 곽계환;김원태;김기순;장화섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.167-174
    • /
    • 2003
  • It is absolutely natural to be interested in durability and safety of the structure under shear behavior. To fulfill this desire, a comparison on the shear behavior between steel fiber reinforced concrete both simple and continuous beams is done to use in the field working. Several operations are conducted : First of all, plan for optimal combination is standardized. Second, resistance for shear has been generalized in that it is decided by combination of individual elements. Third, as the fracture of tensile bar leads to destruction of specimen, shear behavior of whole specimen is decided by stress working on tensile bar. It should be generalized for other specimens also. Forth, evidence of the softness of steel fiber reinforced concrete beam by experiment lead to application in the fields. Finally, numeral values of the steel fiber reinforced concrete are analyzed and the result is compared to those of experiments. With these consequences, this study was done for the application to dynamic structures such as bridges and the repair and rehabilitation.

  • PDF

강섬유 보강 EVA 콘크리트의 역학적 특성 및 내마모성 (Mechanical Properties and Durability of Abrasion of EVA Concrete Reinforced Steel Fiber)

  • 성찬용;남기성
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.45-54
    • /
    • 2014
  • This study was performed to evaluate compressive strength, flexural strength, static modulus of elasticity, stress-strain ratio and durability of abrasion on EVA concrete reinforced steel fiber (SF) in order to use hydraulic structures, underground utilities, offshore structures and structures being applied soil contaminated area. It is used ordinary portland cement, crushed coarse aggregate, nature fine aggregate, EVA redispersible polymer powder, superplasticizer and deforming agent to find optimum mix design of EVA concrete reinforced steel fiber. EVA concrete reinforced SF was effected on the improvement of mechanical properties and durability of abrasion.

Stress-strain relationships for steel fiber reinforced self-compacting concrete

  • Aslani, Farhad;Natoori, Mehrnaz
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.295-322
    • /
    • 2013
  • Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, toughness, energy absorption capacity and fracture toughness. Modification in the mix design of SCC may have a significant influence on the SFRSCC mechanical properties. Therefore, it is vital to investigate whether all of the assumed hypotheses for steel fiber reinforced concrete (SFRC) are also valid for SFRSCC structures. Although available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates material's mechanical properties. The present study includes: a) evaluation and comparison of the current analytical models used for estimating the mechanical properties of SFRSCC and SFRC, b) proposing new relationships for SFRSCC mixtures mechanical properties. The investigated mechanical properties are based on the available experimental results and include: compressive strength, modulus of elasticity, strain at peak compressive strength, tensile strength, and compressive and tensile stress-strain curves.

강섬유보강 콘크리트의 휨인성에 영향을 미치는 실험방법적 요인 (The Test Methodological Effects on the Flexural Toughness of Steel Fiber Reinforced Concrete)

  • 한승환;이형준;오병환;조재열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.380-385
    • /
    • 1998
  • Nowadays, shotcrete plays an essential part in he construction of underground structures, and steel fiber is so useful for increasing the toughness of the concrete that is spotlighted at tunnel or pavement site. A variety of tests have been developed to measure and quantity the improvements achievable in steel fiber reinforced concrete(SFRC) and shotcrete. But Korea doesn`t have specific standards in this respect, and the only criteria that KHC(Korea Highway Corporation) applies to tunnel shotcreting are flexural strength and toughness quotient. Test results in order to manage the quality of steel fiber reinforced concrete and shocrete are very affected by various test method. Therefore, this study deals with the test methodological effects on SFRC quality. The major interests are loading method, that is, load control and displacement control, loading velocity, support condition.

  • PDF

The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure

  • Zheng, Zhi;Sun, Ye;Pan, Xiaolan;Su, Chunyang;Kong, Jingchang
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2156-2172
    • /
    • 2022
  • This paper investigates the optimum fiber reinforcement for prestressed concrete containment vessels (PCCVs) under internal pressure. To achieve this aim, steel fiber, which is the most widely used fiber type in current engineering applications, is adopted to constitute steel fiber-reinforced concrete (SFRC) to substitute the conventional concrete in the PCCV. The effects of characteristic parameters, 𝜆sf, of the steel fiber affecting significantly the mechanical behavior of the concrete are first taken into account. Partial or complete concrete regions of the PCCV are also considered to be replaced by SFRC to balance the economy and safety. By adopting the ABAQUS software, the ultimate bearing capacity and performance for the fiber-reinforced PCCV are scientifically studied and quantified, and the recommendations for the optimum way of fiber reinforcement are presented.

토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성 (Behavior of durable SFRC Structures for the Protection of Underground Environment)

  • 강보순;심형섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

First Diagonal Cracking and Ultimate Shear of I-Shaped Reinforced Girders of Ultra High Performance Fiber Reinforced Concrete without Stirrup

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.47-56
    • /
    • 2009
  • The first diagonal cracking and ultimate shear load of reinforced girder made of ultra high performance fiber reinforced concrete (UHPFRC) were investigated in this paper. Eleven girders were tested in which eight girders failed in shear. A simplified formulation for the first diagonal cracking load was proposed. An analytical model to predict the ultimate shear load was formulated based on the two bounds theory. A fiber reinforcing parameter was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equation can be used for the first cracking status analysis, while the proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which can also be utilized for numerical limit analysis of reinforced UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성 (Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage)

  • 김동호;홍창우;이주형;이봉학
    • 한국농공학회지
    • /
    • 제44권2호
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.