• Title/Summary/Keyword: Steel bracing

Search Result 178, Processing Time 0.022 seconds

Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System (GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과)

  • Lee, Kang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. This paper proposes a new seismic retrofit methodology combined with glass fiber sheet (GFS) and non-compression X-brace system using carbon fiber (CFXB) for reinforced concrete buildings damaged in earthquakes. The GFS is used to improve the ductility of columns damaged in earthquake. The CFXB consists of carbon fiber bracing and anchors, to replace the conventional steel bracing and bolt connection. This paper reports the seismic resistance of a reinforced concrete frame strengthened using the GFS-CFXB system. Cyclic loading tests were carried out, and the hysteresis of the lateral load-drift relations as well as ductility capacities were investigated. Carbon fiber is less rigid than the conventional materials used for seismic retrofitting, resulting in some significant advantages: the strength of the structure increased markedly with the use of CF X-bracing, and no buckling failure of the bracing was observed.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Seismic Performance Evaluation of Reinforced Concrete Frames Reinforced with Chevron Bracing System (역V형 가새로 보강된 RC 골조의 내진성능평가)

  • Ha, Heonjun;Oh, Keunyeong;Lee, Kangmin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, seismic performance of existing RC frames reinforced with steel chevron bracing systems was experimentally evaluated. For this purpose, the unreinforced base specimen and seismically reinforced specimens with steel chevron bracing systems were fabricated and tested. Both strength and stiffness of the reinforced specimens were targeted about 2-3 times larger than the base specimen. Test results showed that the stiffness, strength, and ductility of the reinforced specimens considerably improved than those of unreinforced base specimen. Therefore, the results from this study could offer the basic information on the developing design guideline for the seismic reinforcement of RC frames.

Experimental study of failure mechanisms in elliptic-braced steel frame

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas;Beheshti-Aval, S. Bahram
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this article, for the first time, the seismic behavior of elliptic-braced moment resisting frame (ELBRF) is assessed through a laboratory program and numerical analyses of FEM specifically focused on the development of global- and local-type failure mechanisms. The ELBRF as a new lateral braced system, when installed in the middle bay of the frames in the facade of a building, not only causes no problem to the opening space of the facade, but also improves the structural behavior. Quantitative and qualitative investigations were pursued to find out how elliptic braces would affect the failure mechanism of ELBRF structures exposed to seismic action as a nonlinear process. To this aim, an experimental test of a ½ scale single-story single-bay ELBRF specimen under cyclic quasi-static loading was run and the results were compared with those for X-bracing, knee-bracing, K-bracing, and diamond-bracing systems in a story base model. Nonlinear FEM analyses were carried out to evaluate failure mechanism, yield order of components, distribution of plasticity, degradation of structural nonlinear stiffness, distribution of internal forces, and energy dissipation capacity. The test results indicated that the yield of elliptic braces would delay the failure mode of adjacent elliptic columns and thus, help tolerate a significant nonlinear deformation to the point of ultimate failure. Symmetrical behavior, high energy absorption, appropriate stiffness, and high ductility in comparison with the conventional systems are some of the advantages of the proposed system.

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Response modification factor of suspended zipper braced frames

  • Abdollahzadeh, Gholamreza;Abbasi, Mehdi
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.165-185
    • /
    • 2015
  • The suspended zipper bracing system is suggested to reduce the flaws of ordinary zipper braced and concentric inverted V braced frames. In the design procedure of suspended zipper bracing systems, columns and top story truss elements are strengthened. This bracing system show different performances and characteristics compared with inverted V braced and ordinary zipper frames. As a result, a different response modification factor for suspend zipper frames is needed. In this research paper, the response modification factor of suspended zipper frames was obtained using the incremental dynamic analysis. Suspended zipper braced frames with different stories and bay lengths were selected to be representations of the design space. To analyze the frames, a number of models were constructed and calibrated using experimental data. These archetype models were subjected to 44 earthquake records of the FEMA-P695 project data set. The incremental dynamic analysis and elastic dynamic analysis were carried out to determine the yield base shear value and elastic base shear value of archetype models using the OpenSEES software. The seismic response modification factor for each frame was calculated separately and the values of 9.5 and 13.6 were recommended for ultimate limit state and allowable stress design methods, respectively.

Seismic Behavior and Recentering Capability Evaluation of Concentrically Braced Frame Structures using Superelastic Shape Alloy Active Control Bracing System (초탄성 형상기억합금 능동제어 가새시스템을 이용한 중심가새프레임 구조물의 지진거동 및 복원성능 평가)

  • Hu, Jong Wan;Rhee, Doo Jae;Joe, Yang Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.1-12
    • /
    • 2012
  • The researches related to active control systems utilizing superelastic shape memory alloys (SMA) have been recently conducted to reduce critical damage due to lateral deformation after severe earthquakes. Although Superelastic SMAs undergo considerable inelastic deformation, they can return to original conditions without heat treatment only after stress removal. We can expect the mitigation of residual deformation owing to inherent recentering characteristics when these smart materials are installed at the part where large deformation is likely to occur. Therefore, the primary purpose of this research is to develop concentrically braced frames (CBFs) with superelastic SMA bracing systems and to evaluate the seismic performance of such frame structures. In order to investigate the inter-story drift response of CBF structures, 3- and 6-story buildings were design according to current design specifications, and then nonlinear time-history analyses were performed on numerical 2D frame models. Based on the numerical analysis results, it can be comparatively verified that the CBFs with superelastic SMA bracing systems have more structural advantages in terms of energy dissipation and recentering behavior than those with conventional steel bracing systems.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Experimental Study on Buckling Restrained Knee Bracing Systems using Channel Scetions (채널 형강을 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험적 연구)

  • Lee, Jin;Lee, Ki Hak;Lee, Han Seon;Kim, Hee Cheul;Lee, Young Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected one-bay, one-story frame. The BRKB system developed in this study was composed of a steel plate as a load-resisting core member and two channel sections to restrain local and global buckling of the core plate. The main purpose of the BRKB system is to restrengthen/rehabilitate old low- and mid-rise RC buildings, which, it is assumed, were designed with non-seismic designs and details. The main variables for the test specimens were the size of the core plates and the stiffeners, and the condition of the end plates. The test results showed that the size of the core plate, which was the main element of the load-resisting member, was the most important parameter in achieving a ductile behavior under tension as well as compression until the maximum displacement exceeds twice the design drift limit.