• Title/Summary/Keyword: Steel box girder

Search Result 305, Processing Time 0.025 seconds

Steel Box Girder Bridge Models of Light Rail Transit with HR Plate (HR Plate의 경량전철 강박스거더교 적용모델)

  • Lee, Seong-Haeng;Yim, Chae-Sun;Hwang, Nak-Yuen;Jung, Kyoung-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.554-562
    • /
    • 2007
  • To increase the demand of HR Plate with thickness up to 22mm, it is necessary that HR Plate is applicable to full member in steel bridge including main girder. In this study, availabilities of the narrow steel box girder of light railway transit with HR Plate width as a main member are discussed. Computational analysis is performed in 15 bridge models of light railway transit with beam element and plate element. As an analysis results, three models in tight railway transit are presented. In conclusion, it is validated that HR Plate can be applying to narrow steel box girder in the light railway transit.

Combining different forms of statistical energy analysis to predict vibrations in a steel box girder comprising periodic stiffening ribs

  • Luo, Hao;Cao, Zhiyang;Zhang, Xun;Li, Cong;Kong, Derui
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.119-131
    • /
    • 2022
  • Due to the complexity of the structure and the limits of classical SEA, a combined SEA approach is employed, with angle-dependent SEA in the low- and mid-frequency ranges and advanced SEA (ASEA) considering indirect coupling in the high-frequency range. As an important component of the steel box girder, the dynamic response of an L-junction periodic ribbed plate is calculated first by the combined SEA and validated by the impact hammer test and finite element method (FEM). Results show that the indirect coupling due to the periodicity of stiffened plate is significant at high frequencies and may cause the error to reach 38.4 dB. Hence, the incident bending wave angle cannot be ignored in comparison to classical SEA. The combined SEA is then extended to investigate the vibration properties of the steel box girder. The bending wave transmission study is likewise carried out to gain further physical insight into indirect coupling. By comparison with FEM and classical SEA, this approach yields good accuracy for calculating the dynamic responses of the steel box girder made of periodic ribbed plates in a wide frequency range. Furthermore, the influences of some important parameters are discussed, and suggestions for vibration and noise control are provided.

A study on the effect of the external electric type corrosion resistance for the bolt connection in weathering steel box girders. (무도장 내후성 강교량의 Box Girder 내부볼트 연결부에 대한 외부전원식 정기방식효과에 관한 연구)

  • Park Yong-Gul;Kim Hun-Tae;Baek Chan Ho;Choi Jung Youl
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.988-993
    • /
    • 2004
  • This paper considers corrosion problems in the bolt connection of weathering steel box girder bridge using the external electric type corrosion resistance method which resisted to local corrosion in coated steel surface with contacted air. The weathering steel was created a rust itself in the passive state. but a coated box girder type was easily dew form could be made galvanic cell that accelerated corrosion. so that it was ruled by protection coat with some paint. Therefore, it needed that can be applied the external electric type corrosion resistance method in coated surface. As a result of the test of polarization amount had measured that the weathering steel was higher currents than the general steel by about $5\~10\%$. Therefore. an external electric type corrosion resistance method can be used to protect local corrosion in the coated bolt connection of weathering steel box girders effectively.

  • PDF

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

An Experimental Study on the Stress Distribution in Steel Box Girder Bridge (강박스거더교의 응력분배 거동에 관한 실측연구)

  • Lee, Seong Haeng;Kim, Kyoung Nam;Son, Young Sang;Park, Tae Gyun;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • It is important to increase the economy and efficiency of the diaphragm of the steel box girder bridge design. In this study, an experimental test is performed in a 4-span steel box girder bridge, which was under constructed according to the dead load of slab concrete and vehicle load. The test result is analyzed to verify the stress distribution of the diaphragm and the middle span. Next, stresses on the vertical stiffener are analyzed according to height. Stresses on the diaphragm with equal height are arranged respectively. Also, the stress distribution of the diaphragm and the middle span. Next, stress on the vertical stiffeners are analyzed according to height. Stresses on the diaphragm with equal height are arranged respectively. Also, the vertical stiffeners in the diaphragm was studied, and using the analyzed results, the proper length of the ratio of vehicle load with curing concrete to vehicle load with asphalt is calculated in each part of the steel box girder bridge. The results provide data that serve as basis for an economical and efficient design for the steel box girder bridge diaphragm.

The Stress Analysis of Diaphragm in Steel box girder bridge (강 박스 거더교의 격벽응력 해석)

  • 조현영;정진환;박중민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.80-86
    • /
    • 1997
  • Recently, the box-girder bridge became quite popular because of the effectiveness of the box section against torsional deformation, and the finite element method has been one of the powerful and versatile method for obtaining the solution of box-girder bridge. The finite element method is used to solve a box girder which is built up with flat plates such as flanges, webs and diaphragm, and box girder is idealized by 8-nodes 2-dimensional isoparmetric finite element. To investigate the stress of diaphragm, substructure analysis is performed with two Parameters which are the location of support and slope of web.

  • PDF

Precise Measurement of the Steel Box Girder Using Industrial Photogrammetry Method (산업사진측량 기법에 의한 교랑 강박스거더 정밀측정)

  • Jung Sung Heuk;Lee Jae Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • The purpose of this study was to establish the accuracy of the industrial photogrammetry system constructed with INCA2 metric camera and V-STARS system on steel box girder measurement under industrial measurement condition. The objective of the measurement was to determine the distances of plane to plane or plane to libs, precise positions of the bolt holes and angles of the plane to plane on the steel box girder using coded targets, tape targets, edge targets and target adapters. The measurement undertaken has shown that industrial photogrammetry method were a very accurate and more importantly were produced quickly to measure the steel box girder.

Development of Non-linear Analysis Model for Torsional Behavior of Composite Box-Girder with Corrugated Steel Webs (복부 파형강판을 갖는 복합교량의 비틀림 거동에 대한 비선형 해석 모델 개발)

  • Ko, Hee Jung;Moon, Jiho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.153-162
    • /
    • 2011
  • Composite box-girder with corrugated steel webs has been widely used in civil engineering practice as an alternative of conventional pre-stressed concrete box-girder because the efficiency of pre-stressing can be increased and weight reduction of superstructure can be achieved by replacing concrete webs as a corrugated steel webs. However, most of previous researches were limited in shear and flexural behavior of such girder so that the torsional behaviors of composite box-girder with corrugated steel webs are not fully understood yet and it needs to be investigated. Some of previous researchers developed the nonlinear theory for torsional analysis of composite box-girder with corrugated steel webs. However, their theories were developed by ignoring the tensile behavior of concrete. Thus, there are certain limitations in analysis of serviceability such as cracking moment and torsional stiffness of the girder. This paper presents the analytical model for torsional behavior of composite box-girder with corrugated steel webs considering tensile behavior of concrete. Based on the proposed analytical model, nonlinear torsional analysis program of composite box-girder with corrugated steel webs was developed. Then, for verification of validation of the developed model, test for the girder was conducted and the results were compared with those of analytical model. Finally, parametric study was conducted and the effects of tensile behavior of concrete on the torsional behavior of the girder were discussed.

Behavior of Concrete-Filled and Tied Steel Tubular Arch Girder (콘크리트 충전 타이드 아치형 강재 합성거더의 선형 거동 분석)

  • Lee, Hak;Park, Ho;Lee, Eun-Ho;Kim, Jung-Ho;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.688-693
    • /
    • 2007
  • Nowadays various studies related with superstructure of bridges are developed and they pursuit more effective section of bridges superstructure, material and economical application of composite materials. CFT structure(Concrete Filled Steel Tubular Structure) is developed type of composite structure that concrete is filled with steel box, and the deformation of the member, stiffness and internal force will be improved by confinement effect of steel box and concrete. This paper introduces new type of girder, CFTA girder( Concrete- Filled and Tied Steel Tubular Arch Girder) which is combined with traditional CFT structure,arch effect and prestress through carrying out the structural analysis by computer programs. The computer programs which is used are ABAQCS and MIDAS, and the 12.2m girder which is applied same load and prestresses is analyzed and compared the results respectively.

  • PDF