• Title/Summary/Keyword: Steel bar

Search Result 910, Processing Time 0.031 seconds

Fracture formation and fracture Volume on Vertical Load by Blasting Demolition of Model Reinforced Concrete Pillars (철근 콘크리트 기둥 발파시 수직하중에 따른 파쇄형태 및 파쇄체적)

  • Park Hoon;Song Jung-Un;Kim Seung-Kon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.45-56
    • /
    • 2005
  • In this study, fracture formation and fracture volume by blasting demolition of model reinforced concrete pillars were compared with various vertical load and influence of reinforced steel bar. The more vertical load increased, the more tensile cracks and vertical direction cracks produced. In vertical load of 2.0ton, tensile cracks on vertical direction were predominantly produced. Generally, the more vertical load increased, the more bending deformation of concrete steel bar decreased. As a result, vertical load was influenced fracture formation of concrete and bending deformation of reinforced steel bar. Reinforced steel bar was influenced fracture volume of concrete. According to vertical load and influence of reinforce steel bar by blasting demolition of reinforced concrete pillars, drilling and blasting pattern may be modified.

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bar (GFRP 보강근의 이음성능)

  • Lee Chang-Ho;Choi Dong-Uk;Song Ki-Mo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.120-123
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength at least equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length: 10, 20, 30 $d_b$ for the deformed steel bars and 20, 30, 40 $d_b$ for the GFRP bars. Two different types of GFRP bars were tested: (1) one with spiral-type deformation and (2) plain round bars. Elastic modulus was about 1/5 of the steel bars while the tensile strength was about 690 MPa for the GFRP bars. Nominal diameter of the GFRP bars and steel bars was 12.7 and 13 mm, respectively. Normal strength concrete (28-day $f_{cu}$ = 30 MPa) was used. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was developed using the lap splice length of 20 and 30 $f_{cu}$. Only $87\%$ of the nominal yield strength was reached with the lap splice length of 10 $d_b$. For the spiral-type deformed GFRP bars with $40-d_b$ lap splice length, 440 MPa in tension was determined. The maximum tensile strength developed of the GFRP bars with smaller lap splice lengths decreased. The plain GFRP bar was not effective in developing the tensile strength even with $40-d_b$ lap splice length. Development of the cracks on beam surface was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Behavior of High Strength Concrete Beams with Hybrid Flexural Reinforcements (하이브리드 휨 보강 고강도 콘크리트 보의 성능 평가)

  • Yang, Jun-Mo;Min, Kyung-Hwan;Kim, Young-Woo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.13-16
    • /
    • 2008
  • In a tension-controlled section, all steel tension reinforcement is assumed to yield at ultimate when using the strength design method to calculate the nominal flexural strength of members with steel reinforcement arranged in multiple layers. Therefore, the tension force is assumed to act at the centroid of the reinforcement with a magnitude equal to the area of tension reinforcement times the yield strength of steel. Because FRP materials have no plastic region, the stress in each reinforcement layer will vary depending on its distance from the neutral axis. Similarly, if different types of FRP bars are used to reinforce the same member, the stress level in each bar type will vary, and the member will show different behavior from our expectation. In this study, six high-strength concrete beam specimens reinforced with conventional steels, CFRP bars, and GFRP bars as flexural reinforcements were constructed and tested. The members reinforced with hybrid reinforcements showed higher stiffness, smaller crack width, and better ductility than the members reinforced with single type of FRP bars.

  • PDF

Nonlinear Finite Element Analysis of Steel Composite Girders (합성형 거더의 3차원 비선형 거동해석)

  • 주영태;강병수;성원진;박대열;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.173-176
    • /
    • 2003
  • Progressive failure analysis of steel composite double T-beam is performed to investigate the mechanical effects of steel composite fabricated in the webs of double-T beam to replace concrete placing forms. The analysis is based on nonlinear finite element scheme considering material nonlinearities of concrete, reinforcing bar and PS steel. Four-parameter strength envelope defines the hardening and softening phenomena of concrete with consideration of the various levels of confining pressures. Rankine maximum strength criterion defines the elasto-plasticity of PS steel and reinforcing bar, and Von Mises $J_2$ failure criterion for steel plate which wraps the concrete webs of double T-beam. A 6m long two-span steel composite double T-beam is analyzed and compared with the experimental results.

  • PDF

A Study of Measuring Existing Steel Stress Using Magnetoelasticity (자기유도 현상을 이용한 철근의 잔존응력 측정기술 연구)

  • Rhim Hong-Chul;Cho Young-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.185-187
    • /
    • 2006
  • This study deals with characterization and the application of magnetoelasticity as a device which measures existing steel stress. Available method of measuring existing stress needs break the concrete and cut the steel bar. But Proposed method doesn't need to cut the steel bar. A successful application of magnetoelasticity depends on the linearity of the relationship between the elastic and magnetic response due to loading. To investigate the correlation between two, steel bars are loaded in tension under uniaxial loading while the magnetic reading is recorded. Results showed linearity or partial-linearity of the elastic behavior of steel bars in relation to magnetic change. In the paper, the various factors affecting the measurements are also discussed.

  • PDF

Pullout Test of Headed Reinforcing Bar in RC or SFRC Members with Side-Face Blowout Failure

  • Lee, Chang-Yong;Kim, Seung-Hun;Lee, Yong-Taeg
    • Architectural research
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this study, side-face blowout failure strength of high strength headed reinforcing bar, which is vertically anchoring between RC or SFRC members, is evaluated throughout pullout test. The major test parameters are content ratio of high strength steel fibers, strength of rebar, length of anchorage, presence of shear reinforcement, and the side concrete cover thickness planned to be 1.3 times of the rebar. In pullout test, tensile force was applied to the headed reinforcing bar with the hinged supports positioned 1.5 and 0.7 times the anchorage length on both sides of the headed reinforcing bar. As a result, the cone-shaped crack occurred where the headed reinforcing bar embedded and finally side-face blowout failure caused by bearing pressure of the headed reinforcing bar. The tensile strength of specimens increased by 13.0 ~26.2% with shear reinforcement. The pullout strength of the specimens increased by 3.6 ~15.4% according to steel fiber reinforcement. Increasing the anchoring length and shear reinforcement were evaluated to reduce the stress bearing ration of the total stress.

Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing (하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계)

  • Kim, Bong Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.