• 제목/요약/키워드: Steel anchor

검색결과 193건 처리시간 0.027초

Dynamic shear strength of unreinforced and Hairpin-reinforced cast-in-place anchors using shaking table tests

  • Kim, Dong Hyun;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.39-58
    • /
    • 2016
  • Since the publication of ACI 318-02, the concrete capacity design (CCD) method has been used to determine the resistance of unreinforced concrete anchors. The regulation of steel-reinforced anchors was proposed in ACI 318-08. Until ACI 318-08, the shear resistance of concrete breakout for an unreinforced anchor during an earthquake was reduced to 75% of the static shear strength, but this reduction has been eliminated since ACI 318-11. In addition, the resistance of a hairpin-reinforced anchor was calculated using only the strength of the steel, and a regulation on the dynamic strength was not given for reinforced anchors. In this study, shaking table tests were performed to evaluate the dynamic shear strength of unreinforced and hairpin-reinforced cast-in-place (CIP) anchors during earthquakes. The anchors used in this study were 30 mm in diameter, with edge distances of 150 mm and embedment depths of 240 mm. The diameter of the hairpin steel was 10 mm. Shaking table tests were carried out on two specimens using the artificial earthquake, based on the United States Nuclear Regulatory Commission (US NRC)'s Regulatory Guide 1.60, and the Northridge earthquake. The experimental results were compared to the current ACI 318 and ETAG 001 design codes.

저하중용 후설치 세트앵커의 전단파괴거동에 관한 매개변수 연구 (A Parameter Study on the Shear Failure Behavior of Post-installed Set Anchor for Light Load)

  • 엄찬희;유승운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권3호
    • /
    • pp.55-63
    • /
    • 2015
  • 콘크리트용 후설치 세트앵커는 콘크리트가 경화된 후에 설치되는 앵커이며 시공 장비의 발달과 시공의 유연성 및 용이성으로 사용량이 증가하고 있는 실정이다. 전단하중을 받는 앵커는 강재 파괴, 콘크리트 파열파괴, 콘크리트 프라이아웃 파괴 등의 대표적인 파괴모드를 보인다. 본 연구에서는 매입깊이, 연단거리 및 콘크리트 강도를 변수로 한 세트앵커의 실험 및 유한요소 해석 결과를 통하여 콘크리트에 매입된 저하중용 후설치 세트앵커의 전단 파괴거동에 미치는 영향을 규명하는 것을 그 목적으로 한다. 매입깊이 변수의 실험 결과 매입깊이가 얕을수록 콘크리트 강도의 영향이 큰 것으로 나타났다. 연단거리 변수의 실험 결과 동일한 파괴모드를 보이면서 콘크리트 강도의 영향이 크지 않은 것으로 나타났다. 강재 파괴가 발생한 실험 결과를 비교해 보았을 때 콘크리트 강도가 클수록 변위가 상대적으로 더 작게 나타났다.

Monitoring of Floating Fish Reef Installed in Koje Coastal Waters

  • Kim, Chang-Gil;Kim, Ho-Sang;Kim, Tae-Ho;Baik, Chul-In
    • Ocean and Polar Research
    • /
    • 제23권3호
    • /
    • pp.305-310
    • /
    • 2001
  • This paper describes a floating fish reef technology for enhancement of fisheries productivity in the muddy areas. The floating fish reef was composed of main fish cage, anchor rope and concrete anchor blocks. Main fish cage was made up of 12 steel buoys measuring 0.37m in diameter and 1.5m long, polyethylene (PE) netting and circular steel rings. Each steel buoy had buoyancy of 110kgf. The size of main fish cage was 1.96 m in diameter and 3.75m in length. Monitoring on its durability was made for eight months after installation. The steel buoys fixed on main fish cage and nettings were observed to be kept safely. The wet weight of fouling organisms per unit area$(m^2)$ was 26.6kgf after eight months. Reduction in the cross-section of steel buoys and circular steel rings of main fish cage were not found. In addition, any cracks on the concrete anchor blocks were not observed.

  • PDF

강재교각 기초부의 연결상세 개선을 위한 실험적 연구 (An Experimental Study For Improvement of Joint Detail of Steel Pier - Foundation)

  • 김희주;함준수;양성돈;황원섭
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.491-501
    • /
    • 2012
  • 현재 강재교각 기초부의 설계에 적용되어지고 있는 형식은 기초 콘크리트 내부에 앵커프레임을 설치하여 교각부와 연결하는 형태로 설계 및 시공을 하고 있다. 이는 복잡한 설계와 시공으로 인하여 기초부의 크기가 커지고, 과대 설계되는 경향이 있다. 본 연구에서는 고성능강을 이용한 교각 기초부의 연결상세와 관련하여 새로운 형상을 제안하기 위하여 기존 설계기준에 의한 시험체와 고장력 앵커를 사용한 새로운 연결형상 시험체 등 총 3개의 시험체를 제작하여 실내 시험을 실시하였다. 이를 통하여 각 시험체의 성능을 비교 분석하여 연결형식에 따른 구조물의 거동특성을 분석하였다.

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석 (Nonlinear Analysis of Anchor Head for High Strength Steel Strand)

  • 노명현;성택룡;김진국
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.163-173
    • /
    • 2012
  • 이 연구에서는 프리스트레싱용 고강도 강연선의 정착장치 중 강연선을 직접 정착하는 앵커헤드(anchor head)에 대해 거동특성을 분석하고, 앵커헤드의 제원을 결정하는 단계에 있어서 해석적 검토에 요구되는 프로세스에 대해 정립하였다. 앵커헤드는 쐐기와의 접촉(contact)을 통해 강연선으로부터의 힘이 전달되고 거동변화에 따라 접촉상태 또한 변하게 된다. 이를 고려한 상세 거동분석을 위해 쐐기와 헤드 사이의 접촉(contact)조건을 설정하였으며, 앵커헤드의 비선형 재료모델을 적용하여 기하 및 재료 비선형성을 고려한 구조해석을 수행하였다. 해석결과로부터 다음의 결과를 얻을 수 있었다. 앵커헤드의 거동은 앵커헤드와 쐐기 간의 상호거동에 크게 영향을 받기 때문에 초기 설계단계부터 상대 영향을 고려해야 한다. 쐐기홀(wedge hole)의 배치는 층배열(layered) 보다는 원형배열(circular)이 보다 응력분배에 효과적이고, 쐐기홀의 간격을 증가시키고 헤드 하면 구멍의 크기를 줄여 구멍사이 강재의 두께를 다소 늘이는 것이 구조거동에 효과적이다.

철근의 영향과 앵커 충돌각도를 고려한 유연콘크리트 매트리스의 손상평가 (Damage Evaluation of Flexible Concrete Mattress Considering Steel Reinforcement Modeling and Collision Angle of Anchor)

  • 류연선;조현만;김서현
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.109-116
    • /
    • 2016
  • A flexible concrete mattress (FCM) is a structural system for protecting submarine power or communication cables under various load types. To evaluate its of protection performance, a numerical analysis of an FCM under an anchor collision was performed. The explicit dynamics of the finite element analysis program ANSYS were used for the collision analysis. The influences of the steel reinforcement modeling and collision angle of the anchor on the collision behavior of the FCM were estimated. The FCM damage was evaluated based on the results of the numerical analysis considering the numerical modeling and collision environment.

보강재의 부착방법의 따른 물리적 거동 특성에 관한 연구 (A Study on Physical Behavior Property of R/C Beams Strengthened with Bonding Methods)

  • 한만엽;백승덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.727-732
    • /
    • 1999
  • In this research, we made an experiment on the 10 specimen beams that we made. The specimen beams consist of 4 steel plate strengthening beams and 5 carbon fiber sheet strengthening beams. We applied the methods of notch, rounding off a edge, anchor bolt and side shear strengening to the steel plate and for the case of carbon fiber sheet, we applied the methods of anchor bolt, line anchor and shear strengthening. After all the cases were applied, the beams was measured and analyzed about the behavior property of strengthened beams, th ability of strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods resulted in almost same value until the yield load, and it wasn't quite different from the theoretical value. In comparison with existing method, the SER, SEAS for the steel plate and the CEA, CESS, CCESS for carbon fiber sheet showed the increasement of ductility with big displacement.

  • PDF

비배수 전단강도에 따른 압입식 경량강재앵커블록의 거동 특성 (Characteristics of Behavior of Pressurized light-weight steel Anchor according to undrained shear strength)

  • 허열;안광국;박경수;이용준;강홍식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.219-224
    • /
    • 2009
  • In this study, the characteristics of pullout behavior of Pressurized light-weight steel Anchor was investigated through centrifuge model tests considering pull-out angle $0^{\circ}$ with changing undrained shearstrength(0~1, 2~4, 5~7kPa) of clay. According to the results of tests, the yield pullout load of clay ground was gradually increased up to 30% as undrained shear strength was increased. Therefore, it was known that the yield pullout load was affected by increasing the undrained shear strength, in addition, the pattern of behavior was not changed.

  • PDF

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.