• Title/Summary/Keyword: Steel Plates

Search Result 1,485, Processing Time 0.031 seconds

Analysis of side-plated reinforced concrete beams with partial interaction

  • Siu, W.H.;Su, R.K.L.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.71-96
    • /
    • 2011
  • Existing reinforced concrete (RC) beams can be strengthened with externally bolted steel plates to the sides of beams. The effectiveness of this type of bolted side-plate (BSP) beam can however be affected by partial interaction between the steel plates and RC beams due to the mechanical slip of bolts. To avoid over-estimation of the flexural strength and ensure accurate prediction of the load-deformation response of the beams, the effect of partial interaction has to be properly considered. In this paper, a special non-linear macro-finite-element model that takes into account the effects of partial interaction is proposed. The RC beam and the steel plates are modelled as two different elements, interacting through discrete groups of bolts. A layered method is adopted for the formulation of the RC beam and steel plate elements, while a special non-linear model based on a kinematic hardening assumption for the bolts is used to simulate the bolt group effect. The computer program SiBAN was developed based on the proposed approach. Comparison with the available experimental results shows that SiBAN can accurately predict the partial interaction behaviour of the BSP beams. Further numerical simulations show that the interaction between the RC beam and the steel plates is greatly reduced by the formation of plastic hinges and should be considered in analyses of the strengthened beams.

A Study on the Flexural and Shear Behavior of Repaired and Rehabilitated RC Beams (보수$\cdot$보강된 철근콘크리트 보의 휨 및 전단 거동에 관한 연구)

  • 김태봉;이재범;류택은
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.129-140
    • /
    • 1999
  • This study presents test results of RC beams strengthened by steel plates, carbon fiber sheets(CFS) and aramid fiber sheets(AFS) for increasing flexural and shear resistance. The test was performed with different parameters including the type of strengthening materials, flexural-strengthening methods and shear-strengthening methods. In case of flexural test, RC beams are initially loaded to 70% of the ultimate flexural capacity and in case of shear test loaded to 60 or 80 percent of the ultimate shear capacity and subsequently reinforced with steel plates, CFS and AFS. Experimental data on strength, steel strain, deflection, and mode of failure of the reinforced beams were obtained, and comparisons between the different shear reinforced schemes and the non-strengthened control beams were made. The test results showed that damaged RC beams strengthened by steel plates, CFS and AFS have more improved the flexural and shear capacity. For the beams with external reinforcement by steel plates, aramid fiber sheets and carbon fiber sheets increases in ultimate strength of 4 to 21, 17 to 43 and 26 to 36 percent were respectively achieved. Initial load had small effect on strength after reinforcement, but an important influence on deflection. One sheet reinforced was stronger than two sheets reinforced but less deflected than two sheets reinforced.

  • PDF

Local ratcheting behavior in notched 1045 steel plates

  • Kolasangiani, K.;Farhangdoost, K.;Shariati, M.;Varvani-Farahani, A.
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this paper, local ratcheting behavior of 1045 steel plates with circular cutout was investigated. Experimental tests were carried out by a Zwick/Roell HB 100 servo hydraulic machine. In order to measure the local strain at notch root, a data acquisition system with strain gauge was used. Various notch diameters and distances of strain gauges mounted from the notch root were found influential in the magnitude of local ratcheting strain. It was found that the local maximum principal stress plays a crucial role in increasing the local plastic deformation. Numerical simulation was done by ABAQUS software using nonlinear isotropic/kinematic hardening model. Material parameters of hardening model were attained from several stabilized cycles of flat specimens subjected to symmetric strain cycles. The nonlinear kinematic hardening model along with the Neuber's rule was employed to assess local ratcheting at the notch root of steel plates. The results of the numerical simulations agreed closely with those measured values in this study. Both ratcheting progress and mean stress relaxation occurred simultaneously at the notch root.

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof (절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조)

  • Eunbi Lee;Min-Joon Park;Minseob Kim;Jinho Shin;Sungmin Youn
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Experimental Test on the Effect of Onsite Welding of Steel Plates for a Joint Between Concrete Columns and a Steel Belt Truss

  • Shim, Hak Bo;Yun, Da Yo;Park, Hyo Seon
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • To connect exterior reinforced concrete (RC) columns with the steel belt truss, the gusset plates are welded to the steel plates embedded in the RC column. Then, the concrete around an embedded plate is very likely to be damaged by the heat input from a long-time (6 to 48 hours) welding of the embedded and gusset plates at a joint between RC columns and steel belt truss. However, very few studies have assessed the concrete damage caused by the welding heat between embedded and gusset plates, and no clear onsite solution has been found. In this paper, experimental tests have been carried out on 4 full-scale specimen to analyze the effect of long-time (about 6 hours) onsite welding (1-side welding and 3-side welding) between a gusset plate and an embedded plate in high strength concrete with compressive strength of 55 MPa and 80 MPa on RC columns. The effect of the long-time welding heat of embedded and gusset plates, which are used in real high-rise building construction sites, on concrete is analyzed in terms of the following three items: 1) temperature distribution, 2) pattern and characteristics of cracks, and 3) effect of the cracks on the compressive strength of RC column. Based on the experimental results, even though the heat input up to about 150? from the long-time onsite welding on the high-strength concrete column for the joint could result in concrete cracks in a radial form, it is found that the welding cracks have no effect on the axial stiffness and strength of the concrete column.

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.

Strengthening of hollow brick infill walls with expanded steel plates

  • Cumhur, Alper;Altundal, Adil;Aykac, Sabahattin;Aykac, Bengi
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.887-904
    • /
    • 2016
  • An efficient, economical and practical strengthening method for hollow brick infill walls was proposed and investigated in the present study, experimentally and numerically. This method aims at increasing the overall lateral strength and stiffness of the structure by increasing the contribution of the infill walls and providing the non-bearing components of the structure with the capability of absorbing earthquake-induced energy to minimize structural damage during seismic excitations. A total of eleven full-scale infill walls strengthened with expanded mild steel plates were tested under diagonal monotonic loading to simulate the loading condition of the non-bearing walls during an earthquake. The contact surface between the plates and the wall was increased with the help of plaster. Thickness of the plates bonded to both faces of the wall and the spacing of the bolts were adopted as test parameters. The experiments indicated that the plates were able to carry a major portion of the tensile stresses induced by the diagonal loads and provided the walls walls with a considerable confining effect. The composite action attained by the plates and the wall until yielding of the bolts increased the load capacities, rigidities, ductilities and energy-absorption capacities of the walls, considerably.