• Title/Summary/Keyword: Steel Fiber Reinforced Concrete (SFRC)

Search Result 169, Processing Time 0.027 seconds

Strength Reliability Analysis of Continuous Steel Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 연속보의 강도신뢰성 해석)

  • 유한신;곽계환;조효남
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.267-273
    • /
    • 2003
  • Steel fiber may be used to raise the effectiveness and safety of reinforced concrete structure and to relax its brittle-fracture behavior. However it is to be clearly stated that the uncertainty for the strength of fiber reinforced concrete(SFRC) is rather increased. Therefore, it is necessary to evaluate the safety of SFRC beam using reliability analysis incorporating realistic uncertainty. This study presents the statistical data and proposes the limit state model to analyze the reliability of SFRC bear In order to verify the efficiency of the proposed limit state model, its numerical application and sensitivity analysis were performed for a continuous SFRC beam. From the results of the numerical analysis, it is founded that the reliability of SFRC beam is significantly difficult from the conventional RC beams and proposed limit state model (or SFRC beam is more rational compared with that for conventional RC beams. Then it may be stated that the reliability analysis of SFRC beams must be carried out for the development of design criteria and the safety assessment.

  • PDF

Estimation of The Basic Properties of Two-Lift Concrete Pavement to Apply Korea Condition (이층 포설 콘크리트 포장의 국내 적용을 위한 강섬유 보강 콘크리트 기초 물성평가)

  • Won, Hong-Sang;Ryu, Sung-Woo;Hong, Jong-Yong;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • This study had a focus on investigating technical validity of Two-Lift Concrete Pavements which had never been constructed in Korea in order to olve the problem of existing concrete pavements. This study found out the application of Steel Fiber Reinforced Concrete (SFRC) which was one of ew techniques. Also, optimal steel fiber contents and pavement thickness were determined. This study also measured compressive strengths, lexural strengths, toughness indexes, tensile strengths and fatigue strengths to estimate the performance of SFRC of according to results of aboratory experiments, slumps and air contents of concrete specimens the standards satisfied and compressive strengths to open traffic. At bending ests, Toughness Index of SFRC increased but flexural strength didn’'t increase as compared with non-steel fiber concretes. And, energy absorption of SFRC was very good and SFRC showed improvement in freezing and thawing resistances. To complete this research, we will evaluate the pplication methods and performance of SFRC at field section.

Structural Performance Evaluation on the Slab with the SFRC and Steel Deck-plate (데크플레이트를 사용한 강섬유보강콘크리트 슬래브의 구조성능 평가)

  • Hong, Geon-Ho;Chae, Byung-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.3-10
    • /
    • 2018
  • Steel fiber reinforced concrete can improve the resistance to cracking by adding steel fibers when mixing concrete. It can reduce the temperature and shrinkage cracks, and its flexural performance can be improved by increasing the effective moment of inertia. In this study, the deck-plate was used to replace the concrete form and reinforcing bars, and the steel fiber reinforced concrete was used to control the shrinkage and temperature cracks, and improve the flexural performance of the slab. Total 9 slab specimens were tested for analyzing the structural performance and serviceability. As a results, flexural capacity of the slab with deck-plate was evaluated to be superior to that of the normal reinforced concrete slab specimens with the same tensile reinforcement. The steel fiber reinforced concrete was found to have about 8% flexural capacity increase depending on the steel fiber content $15.7kg/m^3$. Also, in terms of flexural stiffness, the specimens using steel fiber reinforced concrete for the same parameters were evaluated to have a stiffness increase of about 30% compared with the case of using ordinary concrete. Especially, it was found that the stiffness of the test results was significantly higher than the analytical result because the increase of the tensile strength of the steel fiber reinforced concrete is not reflected in the current structural code.

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

An Experimental Study on Post-Crack Equivalent Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 균열 후 등가인장강도에 관한 실험적 연구)

  • 박홍용;안영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.635-638
    • /
    • 2000
  • This experimental were carried out in order to investigate the equivalent strength of SFRC (Steel Fiber Reinforced Concrete). Tow hundred and tenh SFRC beeam (size: 150x150x550) were used in the tests the relationships between loading and mid-point deflections of the beams were observed four oint bending loading. From the test results, prediction formulas for the equivalent strength of SFRC beams are suggested.

  • PDF

Crack Control of Concrete Slab Track System (콘크리트 슬래브궤도의 균열제한)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.862-867
    • /
    • 2004
  • In this paper, the crack properties of steel fiber reinforced concrete (SFHC) beams by experimental method are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Crack width and crack number in the SFRC beams havebeen evaluated from experimental test data at various levels in the beams.

  • PDF

Effective flexural rigidities for RC beams and columns with steel fiber

  • Bengar, Habib Akbarzadeh;Kiadehi, Mohammad Asadi;Shayanfar, Javad;Nazari, Maryam
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.453-465
    • /
    • 2020
  • Influences of different variables that affect the effective flexural rigidity of reinforced concrete (RC) members are not considered in the most seismic codes. Furthermore, in the last decades, the application of steel fibers in concrete matrix designs has been increased, requiring development of an accurate analytical procedure to calculate the effective flexural rigidity of steel fiber reinforced concrete (SFRC) members. In this paper, first, a nonlinear analytical procedure is proposed to calculate the SFRC members' effective flexural rigidity. The proposed model's accuracy is confirmed by comparing the results obtained from nonlinear analysis with those recorded from the experimental testing. Then a parametric study is conducted to investigate the effects of different parameters such as varying axial load and steel fiber are then investigated through moment-curvature analysis of various SFRC (normal-strength concrete) sections. The obtained results show that increasing the steel fiber volume percentage increases the effective flexural rigidity. Also it's been indicated that the varying axial load affects the effective flexural rigidity. Lastly, proper equations are developed to estimate the effective flexural rigidity of SFRC members.

Experimental Study of Steel Fiber Concrete Panel (강섬유보강 콘크리트 패널에 대한 실험연구)

  • 박홍용;임상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.307-310
    • /
    • 1999
  • In this panel test, the toughness and post-cracking tensile strength of SFRC(Steel Fiber Reinforced Concrete) measured on 24 panels(size; 60cm $\times$ 60cm $\times$ 10cm) which are the basic characteristics than can determine the load bearing capacity of SFRC are investigated. Those values are calculated using load-deflection curves and load-absorbed energy curves. Post-cracking tensile strength of SFRC in this study are determined by yield line theory. From the test results, it is seen that the higher the volume of steel fiber is, the higher the absorbed energy is.

  • PDF

Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨 피로거동에 관한 연구)

  • 장동일;채원규;손영현
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC(steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. The three point loading system is used in the fatigue tests. In tl1ese tests, relations between the repeated loading cycles and the mid-span deflections, number of repeated loadmg cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the elastic strain energy and inelastic strain energy of SFRC were studied. A S - N curve \vas drawn to present the fatigue strength of SFRC beam. From che test results, by increasing the steel fiber content the energy lost on the permanent deformation decreases and the energy spent on crack growth increases. But in case of SFRC with the same steel fiber content the higher the steel fiber aspect ratio is, the less the elastic strain energy is. According to S - N curve drawn by the regression analysis on the fatugue test results, the fatigue strength with 2,000,000 repeated loading cycles in SFRC with the steel fiber content is 1.0% shows about 70% on the first crack static flexural strength.

A Study on the Flexural Behavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨거동에 관한 연구)

  • 장동일;채원규;이명구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.169-174
    • /
    • 1990
  • Fracture tests were carried out in order to investigate the flexural behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Sixty three SFRC beams were used in the tests, the fracture mode, the relationships between loading and strains, and the relationships between loading and mid-span deflections of the beams were observed under the three point bending loading. From the test results, the effects of steel fiber contents and a/h ratio on the concrete flexural behavior were studied, and the stress intensity factors and the flexural strength of SFRC beams were calculated. According to the results of regression analysis, predicting formulas for the flexural strength of SFRC beams are also suggested.

  • PDF