• 제목/요약/키워드: Steel Fiber Reinforced Concrete (SFRC)

검색결과 169건 처리시간 0.033초

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

강섬유보강 철근콘크리트구조물에 있어서의 균열폭 계산 (Calculation of Crack Width in SFRC Structures)

  • 강보순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.579-584
    • /
    • 2001
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit states. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

  • PDF

강섬유보강 콘크리트의 내구성 및 건조수축변형 특성에 관한 실험적 연구 (An Experimental Study on the Durability and Dryng Shrinkage of Steel Fiber Reinforced Concrete)

  • 박승범;윤의식;홍석주;박병철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.80-83
    • /
    • 1995
  • In order to develope and apply high-performance steel fiber reinforced concrete (SFRC), the effects of steel fibers on durability and long-term deformation of SFRC due to various mixing conditions have been studied. As the test result show, the manufacturing process technology of industrial SFRC is developed And the durability of SFRC such as freeze-thaw, resisteance abrasion resistance are significantly improved, the drying shrinkage of SFRC, is remarkably decreased by increasing the steel fiber contents than plain concrete

  • PDF

An Experimental Study on the Fracture Strength of Steel Fiber Reinforced Concrete

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.19-21
    • /
    • 2012
  • In this thesis, fracture test was performed in order to investigate the fracture strength of SFRC(steel fiber reinforced concrete) structures. The relationship between the compressive force and strain value of SFRC specimens were observed under the compressive strength test. From the fracture test results, the relationship between percentage of fiber by volume, compressive strength, elastic modulus, and tensile strength of SFRC beams were studied, and the measured elastic modulus of SFRC were compared with the calculated elastic modulus by ACI committee 544.

강섬유보강 폴리머침투콘크리트의 기계적 성질에 관한 연구 (Mechanical Behavior of Steel Fiber Reinforced Polymer-impregnated Concrete)

  • 변근주;송영철;정해성;정기영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.156-161
    • /
    • 1993
  • This paper is to develop steel fiber reinforced polymer-impregnated concrete(SFPIC) by impregnation polymer impregnate into hardened steel fiber reinforced concrete(SFRC). Steel fiber induces ductile behavior and polymer impregnant increase compressive strength. Steel fiber reinforced polymer-impregnated concrete specimens are prepared with fiber contents of 0.0, 1.5, 2.0, 2.5% and tested to obtain uni-axial and bi-axial compression strengths, tensile strength and flexural strength. The strength and mechanical properties of normal concrete, SFRC, SFPIC are compared.

  • PDF

강섬유철근콘크리트 구조물의 균열폭 계산 (Calculation of Crack Width in SFRC Structures)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.293-298
    • /
    • 2005
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of sleet fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit stales. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

SFRC구조물의 휨거동에 관한 해석적 연구 (Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

고강도 강섬유 보강 콘크리트의 장기거동 특성에 관한 실험적 연구 (A experimental study on the long-term response of high-strength Steel-Fiber Reinforced Concrete)

  • 서종명;김재기;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.337-340
    • /
    • 2004
  • In recent days, the beneficial effects of using fiber reinforced concrete, especially Steel Fiber Reinforced Concrete, have been on the rise. However, few studies on long-term behavior of SFRC are executed in spite of great demand of SFRC. The fact that SFRC is far better than NRC in various properties such as tensile strength, ductility, flexural toughness has been certified by many researchers. And, those advantages can be also applied to decrease the structures deterioration induced by creep and shrinkage. Furthermore, even though it is fact that SFRC is generally used in joint members to distribute concentrated stresses by fibers, SFRC is treated as NRC in designing especially for long-term behavior of structures. So this paper is about a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this paper, the test results of eighteen high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of $1\%$ by volume were presented. The test result shows that SFRC is advantageous rather than NRC in long-term response.

  • PDF

강섬유보강 콘크리트의 지압강도에 관한 연구 (A Study on the Bearing Strength of Steel Fiber Reinforced Concrete)

  • 차희석;조환성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.111-114
    • /
    • 1999
  • SFRC(Steel Fiber Reinforced Concrete) has advantage of crack resistance and ductility failure behavior. But the study which investigated about effect of steel fiber under bearing stress is not to be enough, and it does not be sure of criterion of SFRC for allowable bearing stress formula in internal specification. The purpose of this study is to clear the influence of SFRC on the bearing capacity and ductility of material through static loading test. additionally, arrive an allowable bearing stress formula for SFRC and examine mechanical behaviro by the 3-D finite element analysis.

  • PDF