• Title/Summary/Keyword: Steam leak

Search Result 57, Processing Time 0.024 seconds

Study on Evaluation of the Leak Rate for Steam Valve in Power Plant (발전용 증기밸브 누설량 평가에 관한 연구)

  • Lee, S.G.;Park, J.H.;Yoo, G.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Acoustic emission technology is applied to diagnosis the internal leak and operating conditions of the major valves at nuclear power plants. The purpose of this study is to verify availability of the acoustic emission as in-situ diagnosis method. In this study, acoustic emission tests are performed when the pressurized high temperature steam flowed through gate valve(1st stage reheater valve) and glove valve(main steam dump valve) on the normal size of 4 and 8". The valve internal leak diagnosis system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, signal level analysis and RMS(root mean square) analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Simulation of Water/steam into Sodium Leak Behavior for an Acoustic Noise Generation Mechanism Study

  • Kim, Tae-Joon;Hwang, Sung-Tai;Jeong, Kyung-Chai;Park, Jong-Hyeun;Valery S. Yughay
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.145-155
    • /
    • 2001
  • This simulation first allows us to define a transition zone from a bubble to jet mode of the argon out-flow and hereinafter to define a similar area for water-steam leak in the KALIMER SG (Korea Advanced Liquid Metal Reactor Steam Generator) using a water mock-up system, taking into account the KALIMER leak classification and tube bundle design, as a simulation of a real water-steam into sodium leak. in accordance with leak conditions in the KALIMER SG, the transition from bubbling to jetting is studied by means of turbulence regime simulation for argon out-flow through a very small orifice, which has the equivalent diameter of about 0.253 mm. finally the noise generation mechanism is explained from the existing experimental data. We also confirmed the possibility of micro-leak detection from the information of the bubbling mode through simulations and the experiment in this study.

  • PDF

Production of SCC Flaws and Evaluation Leak Behavior of Steam Generator Tubes (누설 및 파열실험용 SCC 결함 전열관 제작 및 누설거동 평가)

  • Hwang, Seong-Sik;Jung, Man-Kyo;Park, Jang-Yul;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.188-192
    • /
    • 2009
  • A forced outage due to a steam generator tube leak in a Korean nuclear power plant was reported.1) Primary water stress corrosion cracking has occurred in many tubes in the plant, and they were repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to understand the leak behavior of the tubes containing stress corrosion cracks. Stress corrosion cracks were developed in 0.1 M sodium tetrathionate solution at room temperature. Steam generator(SG) tubes with short cracks were successfully fabricated with a restricted solution contact method. The leak rates of the degraded tubes were measured at room temperature. Some tubes with 100 % through wall cracks showed an increase of leak rate with time at a constant pressure.

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Advantages of Acoustic Leak Detection System Development for KALIMER Steam Generators

  • Kim, Tae-Joon;Valery S. Yughay;Hwang, Sung-Tai;Chai, Jeong-Kyung;Choi, Jong-Hyeun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2001
  • For sodium cooling liquid metal reactors during the last 25 years, it was most important to verify the safety of the steam generator, which absolutely requires a water leak detection system with fine sensitivity and response. This study describes the structure and leak classification of the HAMMER (Korea Advanced Liquid Metal Reactor) steam generator, compared with other classifications, and explains the effects of leak development. The requirements and experimental situations for the development of the KALIMER acoustic leak detection system (KADS) which detects micro leaks, not intermediate leaks, are introduced. We proposed four frequency bands, 1∼8kHz, 8∼20kHz, 20∼40kHz and 40∼200kHz, split effectively for analyzing the detected acoustic leak signals obtained from the sodium-water reaction model or water model in the mock-up system.

  • PDF

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Steam Leak Detection by Using Image Signal (영상신호를 이용한 증기누설 검출 방법)

  • Choi, Young-Chul;Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.828-833
    • /
    • 2010
  • Steam leakage is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for the detecting steam leakage by using image signal processing. Our basic idea come from heat shimmer which shine with a soft light that looks as if it shakes slightly. To test the performance of this technique, experiments have been performed for simple heat source and steam generator. Results show that the proposed technique is quite powerful in the steam leak detection.

Steam Leak Detection Method in a Pipeline Using Histogram Analysis (히스토그램 분석을 이용한 배관 증기누설 검출 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Chae, Gyung-Sun;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.307-313
    • /
    • 2015
  • Leak detection in a pipeline usually involves acoustic emission sensors such as contact type sensors. These contact type sensors pose difficulties for installation and cannot operate in areas having high temperature and radiation. Therefore, recently, many researchers have studied the leak detection phenomenon by using a camera. Leak detection by using a camera has the advantages of long distance monitoring and wide area surveillance. However, the conventional leak detection method by using difference images often mistakes the vibration of a structure for a leak. In this paper, we propose a method for steam leakage detection by using the moving average of difference images and histogram analysis. The proposed method can separate the leakage and the vibration of a structure. The working performance of the proposed method is verified by comparing with experimental results.

Burst Behavior for Mechanically Machined Axial Flaws of Steam Generator Tubings

  • Hwang, Seong Sik;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 2004
  • It has been reported that some events of a rupture of seam generator tube have occurred in nuclear power plants around the world. Main causes of the leakage are from various types of corrosion in the steam generator(SG) tubings. Primary water stress corrosion cracking(PWSCC) of steam generator tubings have occurred in many tubes in Korean plant, and they were repaired using sleeves or plugs, In order to develop proper repair criteria, it is necessary to ascertain the leak behavior of the tubings. A high pressure leak and burst testing system was manufactured. Various types of Electro Discharged Machined (EDM) notches were developed on the SG tubes. Leak rate and burst pressure were measured on the tubes at room temperature. Burst pressure of the part through wall defected tubes depends on the defect depth, Water flow rates after the burst were independent of the t1aw types; tubes having 20 to 60 mm long EDM notches showed similar flow rates regardless of the defect depth. A fast pressurization rate gave the tube a lower burst pressure than the case of a slow pressurization.

Preliminary Analysis of a Sampling and Transportation System for Leak Detection during Steam Leak Accident of a Pipe in Nuclear Power Plants (원전 내 배관의 증기 누설 사고 시 누설 탐지 포집/이송 시스템 예비 해석)

  • Choi, Dae Kyung;Choi, Choengryul;Kwon, Tae-Soon;Euh, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2020
  • As leakage in nuclear power plants could cause a variety of problems, it is very critical to monitor leakage from the safety point of view. Accordingly, a new type of leak detection system is currently being developed and flow characteristics of the sampling and transportation system are investigated by using numerical analysis as a part of the development process in this study. The results showed that the steam mass fraction varied according to the effect of the gap between the insulation and piping component, transportation velocity, and material properties of porous media during the sampling and transportation process. The results of this study should be useful for understanding flow characteristics of the sampling and transportation system and its design and application.