• Title/Summary/Keyword: Steam Plant

Search Result 940, Processing Time 0.033 seconds

A study on the adaptive predictive control of steam-reforming plant using bilinear model (쌍일차 모델을 이용한 스팀개질 플랜트의 적응예측제어에 관한 연구)

  • 오세천;여영구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.156-159
    • /
    • 1996
  • An adaptive predictive control for steam-reforming plant which consist of a steam-gas reformer and a waste heat steam-boiler was studied by using MIMO bilinear model. The simulation experiments of the process identification were performed by using linear and bilinear models. From the simulation results it was found that the bilinear model represented the dynamic behavior of a steam-reforming plant very well. ARMA model was used in the process identification and the adaptive predictive control. To verify the performance and effectiveness of the adaptive predictive controller proposed in this study the simulation results of steam-reforming plant control based on bilinear model were compared to those of linear model. The simulation results showed that the adaptive predictive controller based on bilinear model provides better performance than those of linear model.

  • PDF

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

A Study on the Evaluation of Turbine Efficiency through the Performance Test of New Power Plant (신규 화력발전소의 성능 시험을 통한 터빈 효율의 평가에 관한 연구)

  • Kweon, Y.S.;Chung, H.T.;Jung, Y.B.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Super-critical type steam power plant, which operates with steam pressure above the super-critical point, has a good reputation recently and is adopted as a new standard of the Korean Electric Power Corporation. The reason for the good reputation lies in it's superior power efficiency. However, the field data of the new power plant for the verification of it's performance are still insufficient, and more empirical data are needed to acquire technologies on the effective operation of it. In this study, the authors analyzed the field test data on power efficiencies got in a super-critical type steam power plant, and evaluated the excellency of the new plant by comparing the efficiency data with the one got in a conventional sub-critical type steam power plant.

  • PDF

DCS Model Calculation for Steam Temperature System

  • Hwang, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1201-1204
    • /
    • 2004
  • This paper suggests a DCS (Distributed Control System) model for steam temperature system of the thermal power plant. The model calculated within sectional range is linear. In order to calculate mathematical models, the system is partitioned into two or three sectors according to its thermal conditions, that is, saturated water/steam and superheating state. It is divided into three sections; water supply, steam generation and steam heating loop. The steam heating loop is called 'superheater' or steam temperature system. Water spray supply is the control input. A first order linear model is extracted. For linear approach, sectional linearization is achieved. Modeling methodology is a decomposition-synthetic technique. Superheater is composed of several tube-blocks. For this block, linear input-output model is to be calculated. Each tiny model has its transfer function. By expanding these block models to total system, synthetic DCS linear models are derived. Control instrument include/exclude models are also considered. The resultant models include thermal combustion conditions, and applicable to practical plant engineering field.

  • PDF

The Steam Temperature Control of Renovated Boiler in 100MW Power Plant (100MW 발전소 개조 보일러의 증기온도 제어)

  • Lim, Geon-Pyo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1935-1940
    • /
    • 2011
  • The control logic of steam temperature was redesigned, tested and applied to the power plant after its steam temperature equipments had been revised. This power plant use the ancillary gas gotten in the process of making iron in the steel mill. The boiler of power plant has the superheater and reheater to make the superheated steam. The superheater and reheater have the spray valve to control their temperature. The reheater has the gas bypass damper additionally in this plant. The control logics were redesigned in cascade forms and the initial parameters of control logics were calculated from the several step tests. The final parameters could be obtained through the several repeated tests and the feedforward functions were added by temperature deviation and air flow. The power plant is being commercially-operated normally by improved control logics and It is expected that this improved controls help the efficiency improvement and safe operation of plant.

Oil Whip Phenomena and Countermeasure on Steam Turbine in 350MW Load Thermal Power Plant (350MW급 화력 발전소 증기터빈의 오일 휩 현상 및 대책)

  • 구재량;김연환;배용채;김계연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1015-1019
    • /
    • 2001
  • There are several bearing systems at the large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil and the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

A Study on the Steam Hammering Characteristics by Sudden Closure of Main Stop Valve in the Main Steam Piping System of a Power Plant (화력발전소 주증기배관에서 밸브 차단에 따른 수증기 충격 특성에 관한 연구)

  • Ha, Ji-Soo;Lee, Boo-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • The present study has been carried out to analyze the effect of steam hammering on the steam piping system including the final superheater, the high pressure turbine, check valve and the first reheater by sudden stoping of main stop valve in a power plant. For the present steam hammering analysis, the well known Flowmaster software has been used to model the steam piping system and the time dependent characteristics of pressure and steam mass flow rate has been conducted. Using the result of the unsteady pressure and steam mass flow rate, the forces acting on the elbows in the piping system has been derived. From the present analysis, it has been elucidated that the elbow just before the main stop valve and the elbow near the connection pipe between bypass pipe and check valve had the largest force among the elbows in the steam piping system. The structural safety diagnostics study on the elbow and the supporting structures of the steam piping system of a power plant will be conducted in the future by the present results of the forces acting on the elbow.

A dual Pressure, Steam Injection Combined cycle Power Plant Performance Analysis (2압, 증기분사 복합발전 사이클에 대한 성능해석)

  • Kim, Su-Yong;Son, Ho-Jae;Park, Mu-Ryong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.75-86
    • /
    • 1997
  • Combined cycle power plant is a system where a gas turbine or steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. Combined cycle plant is a one from of cogeneration. The temperature of the exhaust gases from a gas turbine ranges from $400^\circC$ to $600^\circC$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a "topping(gas turbine)" and a "bottoming(steam turbine)" cycle. The first cycle, to which most of the heat is supplied, is called the topping cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level and is therefore referred to as a "bottoming cycle". The combination of gas/steam turbine power plant managed to be accepted widely because, first, each individual system has already proven themselves in power plants with a single cycle, therefore, the development costs are low. Secondly, the air as a working medium is relatively non-problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^\circC$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It, therefore, is quite reasonable to use the steam process for the bottoming cycle. Only recently gas turbines attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a dual pressure combined-cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance.

  • PDF

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF